Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 81
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 120(15): e2210808120, 2023 04 11.
Artigo em Inglês | MEDLINE | ID: mdl-37023125

RESUMO

African swine fever virus (ASFV) is a large, double-stranded DNA virus that causes a fatal disease in pigs, posing a threat to the global pig industry. Whereas some ASFV proteins have been found to play important roles in ASFV-host interaction, the functional roles of many proteins are still largely unknown. In this study, we identified I73R, an early viral gene in the replication cycle of ASFV, as a key virulence factor. Our findings demonstrate that pI73R suppresses the host innate immune response by broadly inhibiting the synthesis of host proteins, including antiviral proteins. Crystallization and structural characterization results suggest that pI73R is a nucleic-acid-binding protein containing a Zα domain. It localizes in the nucleus and inhibits host protein synthesis by suppressing the nuclear export of cellular messenger RNA (mRNAs). While pI73R promotes viral replication, the deletion of the gene showed that it is a nonessential gene for virus replication. In vivo safety and immunogenicity evaluation results demonstrate that the deletion mutant ASFV-GZΔI73R is completely nonpathogenic and provides effective protection to pigs against wild-type ASFV. These results reveal I73R as a virulence-related gene critical for ASFV pathogenesis and suggest that it is a potential target for virus attenuation. Accordingly, the deletion mutant ASFV-GZΔI73R can be a potent live-attenuated vaccine candidate.


Assuntos
Vírus da Febre Suína Africana , Febre Suína Africana , Suínos , Animais , Vírus da Febre Suína Africana/genética , Virulência/genética , Febre Suína Africana/prevenção & controle , Fatores de Virulência/genética , Fatores de Virulência/metabolismo , Genes Virais
2.
FASEB J ; 36(3): e22221, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35199383

RESUMO

The DNA damage response (DDR) pathway is critical for maintaining genomic integrity and sustaining organismal development. Viruses can either utilize or circumvent the DDR to facilitate their replication. Pseudorabies virus (PRV) infection was shown to induce apoptosis via stimulating DDR. However, the underlying mechanisms have not been fully explored to date. This study showed that PRV infection robustly activates the ATM and DNA-PK signaling pathways shortly after infection. However, inhibition of ATM, but not DNA-PK, could dampen PRV replication in cells. Importantly, we found that PRV-encoded serine/threonine kinase UL13 interacts with and subsequently phosphorylates H2AX. Furthermore, we found that UL13 deletion largely attenuates PRV neuroinvasiveness and virulence in vivo. In addtion, we showed that UL13 contributes to H2AX phosphorylation upon PRV infection both in vitro and in vivo, but does not affect ATM phosphorylation. Finally, we showed that knockdown of H2AX reduces PRV replication, while this reduction can be further enhanced by deletion of UL13. Taken together, we conclude that PRV-encoded kinase UL13 regulates DNA damage marker γH2AX and UL13-mediated H2AX phosphorylation plays a pivotal role in efficient PRV replication and progeny production.


Assuntos
Herpesvirus Suídeo 1/metabolismo , Histonas/metabolismo , Proteínas Quinases/metabolismo , Pseudorraiva/virologia , Proteínas Virais/metabolismo , Replicação Viral , Animais , Linhagem Celular Tumoral , Chlorocebus aethiops , Feminino , Herpesvirus Suídeo 1/patogenicidade , Herpesvirus Suídeo 1/fisiologia , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Fosforilação , Proteínas Quinases/genética , Pseudorraiva/metabolismo , Suínos , Células Vero , Proteínas Virais/genética
3.
J Appl Microbiol ; 134(3)2023 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-36746436

RESUMO

AIMS: This study aimed to investigate the mechanism of linalool against Pseudomonas lundensis and its application on beef. METHODS AND RESULTS: Field emission scanning electron microscopy found that linalool exerted antibacterial activity with a minimum inhibitory concentration (MIC) of 1.5 ml l-1 by disrupting cell structure. Loss of cell membrane integrity was monitored due to leakage of nucleic acids and K+. In addition, respiratory depression appeared in Ps. lundensis based on inhibition of enzyme activities including hexokinase (HK), glucose 6-phosphate dehydrogenase (G6PDH), phosphofructokinase (PFK), pyruvate kinase (PK), pyruvate dehydrogenase (PDH), citrate synthase (CS), succinate dehydrogenase (SDH), and malate dehydrogenase (MDH). Subsequently, energy limitation also occurred according to the decrease in ATP content and ATPase activity. Molecular docking confirmed that linalool can combine with enzymes in cell wall (ddlB) and energy synthesis (AtpD) pathways to exert antibacterial effect. Of note, linalool has advantages for beef preservation by delaying quality changes including pH, total volatile basic nitrogen (TVB-N) and total viable count (TVC). CONCLUSIONS: Linalool has significant inhibitory effect on Ps. lundensis, and respiratory depression driven by membrane damage is the main inhibitory mechanism.


Assuntos
Antibacterianos , Insuficiência Respiratória , Animais , Bovinos , Simulação de Acoplamento Molecular , Antibacterianos/farmacologia
4.
Int J Mol Sci ; 24(18)2023 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-37762525

RESUMO

It has been reported that in an oxidative environment, the flavonoid 2R,3R-dihydroquercetin (2R,3R-DHQ) oxidizes into a product that rearranges to form quercetin. As quercetin is a very potent antioxidant, much better than 2R,3R-DHQ, this would be an intriguing form of targeting the antioxidant quercetin. The aim of the present study is to further elaborate on this targeting. We can confirm the previous observation that 2R,3R-DHQ is oxidized by horseradish peroxidase (HRP), with H2O2 as the oxidant. However, HPLC analysis revealed that no quercetin was formed, but instead an unstable oxidation product. The inclusion of glutathione (GSH) during the oxidation process resulted in the formation of a 2R,3R-DHQ-GSH adduct, as was identified using HPLC with IT-TOF/MS detection. GSH adducts appeared on the B-ring of the 2R,3R-DHQ quinone, indicating that during oxidation, the B-ring is oxidized from a catechol to form a quinone group. Ascorbate could reduce the quinone back to 2R,3R-DHQ. No 2S,3R-DHQ was detected after the reduction by ascorbate, indicating that a possible epimerization of 2R,3R-DHQ quinone to 2S,3R-DHQ quinone does not occur. The fact that no epimerization of the oxidized product of 2R,3R-DHQ is observed, and that GSH adducts the oxidized product of 2R,3R-DHQ on the B-ring, led us to conclude that the redox-modulating activity of 2R,3R-DHQ quinone resides in its B-ring. This could be confirmed by chemical calculation. Apparently, the administration of 2R,3R-DHQ in an oxidative environment does not result in 'biotargeting' quercetin.


Assuntos
Antioxidantes , Quercetina , Antioxidantes/farmacologia , Quercetina/farmacologia , Peróxido de Hidrogênio , Ácido Ascórbico , Glutationa , Quinonas
5.
Molecules ; 28(15)2023 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-37570860

RESUMO

The cultivation and enrichment of different soils in a vineyard yielded 95 yeast species. Among them, seven strains capable of producing ß-glucosidases were identified using the aescin colorimetric method. One non-Saccharomyces yeast strain was isolated from a plate containing lysine and identified using internal transcription (ITS) as Candida cf. sorbosivorans (C. cf. sorbosivorans), which was named Candida cf. sorbosivorans X1. Additionally, the enzymatic characteristics of the ß-glucosidases produced by this strain were investigated. The ß-glucosidases generated by C. cf. sorbosivorans X1 displayed high enzymatic activity and enzyme-activity retention in a pH range of 3.0 to 5.4 and at temperatures of 30 °C to 35 °C. Using non-targeted metabolomics methods, we investigated the alterations in metabolites during the fermentation of mango juice. The strain C. cf. sorbosivorans X1 demonstrated activity against phenols and terpenes. In the fermented mango juice (X1FMJ), we identified 41 differential metabolites. These included 14 esters, 4 hydrocarbons, 3 aldehydes, 5 ketones, 4 terpenoids, 4 alcohols, 1 aromatic hydrocarbon, 2 amines, 1 acid, and 3 heterocyclic compounds. The metabolic pathways of these differential metabolites were analyzed, revealing four key pathways: tyrosine metabolism, phenylpropanoid biosynthesis, monoterpene biosynthesis, and α-linolenic acid metabolism, which promoted the formation of aroma compounds in the fermented mango juice.

6.
Molecules ; 28(7)2023 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-37049943

RESUMO

This study aimed to optimize the brewing conditions of Shanlan rice wine (SRW) and select a suitable sterilization method. The response surface method experiment was used to optimize the brewing process of SRW. LC-MS/MS (liquid chromatography-tandem mass spectrometry) and GC-MS (gas chromatography-mass spectrometry) were used to analyze the physicochemical components, free amino acids, and flavor metabolites of the thermal-sterilized SRW and the SRW sterilized by intense pulsed light (IPL), respectively. Results showed that the optimum fermentation conditions of SRW were as follows: fermentation temperature, 24.5 °C; Qiuqu amount (the traditional yeast used to produce SRW), 0.78%; water content, 119%. Compared with the physicochemical properties of the control, those of the SRWs separately treated with two sterilization methods were slightly affected. The 60 s pulse treatment reduced the content of bitter amino acids, maintained sweet amino acids and umami amino acids in SRW, and balanced the taste of SRW. After pasteurization, the ester content in wine decreased by 90%, and the alcohol content decreased to different degrees. IPL sterilization slightly affected the ester content and increased the alcohol content. Further analysis of the main flavor metabolites showed that 60 s pulse enhanced the important flavor-producing substances of SRW. In conclusion, 60 s pulse is suitable for sterilizing this wine.


Assuntos
Oryza , Vinho , Vinho/análise , Cromatografia Líquida , Oryza/química , Espectrometria de Massas em Tandem , Aminoácidos/análise , Esterilização , Fermentação
7.
Int J Mol Sci ; 23(21)2022 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-36361817

RESUMO

Floral initiation is a major phase change in the spermatophyte, where developmental programs switch from vegetative growth to reproductive growth. It is a key phase of flowering in tea-oil trees that can affect flowering time and yield, but very little is known about the molecular mechanism of floral initiation in tea-oil trees. A 12-year-old Camellia oleifera (cultivar 'changlin53') was the source of experimental materials in the current study. Scanning electron microscopy was used to identify the key stage of floral initiation, and transcriptome analysis was used to reveal the transcriptional regulatory network in old leaves involved in floral initiation. We mined 5 DEGs related to energy and 55 DEGs related to plant hormone signal transduction, and we found floral initiation induction required a high level of energy metabolism, and the phytohormones signals in the old leaves regulate floral initiation, which occurred at stage I and II. Twenty-seven rhythm-related DEGs and 107 genes associated with flowering were also identified, and the circadian rhythm interacted with photoperiod pathways to induce floral initiation. Unigene0017292 (PSEUDO-RESPONSE REGULATOR), Unigene0046809 (LATE ELONGATED HYPOCOTYL), Unigene0009932 (GIGANTEA), Unigene0001842 (CONSTANS), and Unigene0084708 (FLOWER LOCUS T) were the key genes in the circadian rhythm-photoperiod regulatory network. In conjunction with morphological observations and transcriptomic analysis, we concluded that the induction of floral initiation by old leaves in C. oleifera 'changlin53' mainly occurred during stages I and II, floral initiation was completed during stage III, and rhythm-photoperiod interactions may be the source of the main signals in floral initiation induced by old leaves.


Assuntos
Camellia , Camellia/genética , Camellia/metabolismo , Árvores/genética , Perfilação da Expressão Gênica , Flores/metabolismo , Folhas de Planta/genética , Folhas de Planta/metabolismo , Reguladores de Crescimento de Plantas/metabolismo , Chá/metabolismo , Transcriptoma , Regulação da Expressão Gênica de Plantas
8.
Molecules ; 27(9)2022 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-35566340

RESUMO

Coconut (Cocos nucifera L.) is one of the most critical economic crops in the tropics and sub-tropics. Although coconut protein has attracted more and more attention due to its nutritional potential, the lack of proteomic information has limited its practical application. The present study aimed to investigate the coconut meat proteome by shotgun proteomics and protein-based bioinformatic analysis. A grand total of 1686 proteins were identified by searching the National Center for Biotechnology Information (NCBI) protein database and self-constructed C. nucifera transcriptome repository. Among them, 17 and 9 proteins were identified as antioxidant proteins and globulins, respectively. Network analysis of the globulins referred to the sub-works of Cupin and Oleosin, and the antioxidant proteins were related to the sub-networks of glutathione metabolism and peroxisome. The bioactive peptides acquired by in-silico digestion of the targeted proteins have the potential to be applied as antioxidants and emulsifiers for both healthcare and food stabilization.


Assuntos
Cocos , Proteômica , Antioxidantes/metabolismo , Antioxidantes/farmacologia , Cocos/metabolismo , Biologia Computacional , Proteínas de Plantas/metabolismo
9.
World J Microbiol Biotechnol ; 38(4): 56, 2022 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-35165818

RESUMO

Pseudomonas aeruginosa (P. aeruginosa) is the dominant spoilage bacterium in cold fresh beef. The current strategy is undertaken to overcome the low water solubility of linalool by encapsulating linalool into emulsions. The results of field emission scanning electron microscopy and particle size distribution revealed that the appearance of the bacterial cells was severely disrupted after exposure to linalool emulsion (LE) with an minimum inhibitory concentration (MIC) of 1.5 mL/L. Probes combined with fluorescence spectroscopy were performed to detect cell membrane permeability, while intracellular components (protein and ion leakage) and crystal violet staining were further measured to characterize cell membrane integrity and biofilm formation ability. The results confirmed that LE could destroy the structure of the cell membrane, thereby leading to the leakage of intracellular material and effective removal of biofilms. Molecular docking confirmed that LE can interact with the flagellar cap protein (FliD) and DNA of P. aeruginosa, inhibiting biofilm formation and causing genetic damage. Furthermore, the results of respiratory metabolism and reactive oxygen species (ROS) accumulation revealed that LE could significantly inhibit the metabolic activity of P. aeruginosa and induce oxidative stress. In particular, the inhibition rate of LE on P. aeruginosa was 23.03% and inhibited mainly the tricarboxylic acid cycle (TCA). Finally, LE was applied to preserve cold fresh beef, and the results showed that LE could effectively inhibit the activity of P. aeruginosa and delay the quality change of cold fresh beef during the storage period. These results are of great significance to developing natural preservatives and extending the shelf life of cold fresh beef.


Assuntos
Antibacterianos , Pseudomonas aeruginosa , Monoterpenos Acíclicos , Animais , Antibacterianos/farmacologia , Biofilmes , Bovinos , Emulsões , Testes de Sensibilidade Microbiana , Simulação de Acoplamento Molecular
10.
Curr Microbiol ; 78(5): 1730-1740, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33704531

RESUMO

Washing rice water (WRW) refers to the sewage produced by rice washing in China and other parts of Asia people's daily life. As in the WRW is rich a variety of nutrients, microorganisms are prone to multiply and pollute the environment. In this article, high-throughput sequencing is used to describe the microbial diversity in different fermentation time WRW. The results showed that the sequencing depth effectively covered the microbial species in the samples, and the bacterial community structure in the samples of WRW at different fermentation periods was rich in diversity. Preominant taxa included Proteobacteria (62%), Firmicutes (28%), approximately Cyanobacteria (10%) and Bacteroidetes (0.5%). The core WRW microbiome comprises Trabulsiella, Pseudomonas, Serratia, Lactobacillus, Erwinia, Enterobacter, Clostridium and Acinetobacter, some of which are potential beneficial microbes. The change of microbial community composition with the change of habitat was assessed. It was found that environmental factors had significant influence on the assembly structure of microbial community.


Assuntos
Microbiota , Oryza , China , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Água
11.
Molecules ; 26(1)2021 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-33466475

RESUMO

The demand for reduced chemical preservative usage is currently growing, and natural preservatives are being developed to protect seafood. With its excellent antibacterial properties, linalool has been utilized widely in industries. However, its antibacterial mechanisms remain poorly studied. Here, untargeted metabolomics was applied to explore the mechanism of Shewanella putrefaciens cells treated with linalool. Results showed that linalool exhibited remarkable antibacterial activity against S. putrefaciens, with 1.5 µL/mL minimum inhibitory concentration (MIC). The growth of S. putrefaciens was suppressed completely at 1/2 MIC and 1 MIC levels. Linalool treatment reduced the membrane potential (MP); caused the leakage of alkaline phosphatase (AKP); and released the DNA, RNA, and proteins of S. putrefaciens, thus destroying the cell structure and expelling the cytoplasmic content. A total of 170 differential metabolites (DMs) were screened using metabolomics analysis, among which 81 species were upregulated and 89 species were downregulated after linalool treatment. These DMs are closely related to the tricarboxylic acid (TCA) cycle, glycolysis, amino acid metabolism, pantothenate and CoA biosynthesis, aminoacyl-tRNA biosynthesis, and glycerophospholipid metabolism. In addition, linalool substantially affected the activity of key enzymes, such as succinate dehydrogenase (SDH), pyruvate kinase (PK), ATPase, and respiratory chain dehydrogenase. The results provided some insights into the antibacterial mechanism of linalool against S. putrefaciens and are important for the development and application of linalool in seafood preservation.


Assuntos
Monoterpenos Acíclicos/farmacologia , Antibacterianos/farmacologia , Proteínas de Bactérias/metabolismo , Regulação Bacteriana da Expressão Gênica/efeitos dos fármacos , Infecções por Bactérias Gram-Negativas/tratamento farmacológico , Metaboloma/efeitos dos fármacos , Shewanella putrefaciens/efeitos dos fármacos , Infecções por Bactérias Gram-Negativas/metabolismo , Infecções por Bactérias Gram-Negativas/microbiologia , Inseticidas/farmacologia , Shewanella putrefaciens/crescimento & desenvolvimento , Shewanella putrefaciens/metabolismo
12.
Molecules ; 26(9)2021 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-34068822

RESUMO

The contribution of rheological properties and viscoelasticity of the interfacial adsorbed layer to the emulsification mechanism of enzymatic modified sugar beet pectin (SBP) was studied. The component content of each enzymatic modified pectin was lower than that of untreated SBP. Protein and ferulic acid decreased from 5.52% and 1.08% to 0.54% and 0.13%, respectively, resulting in a decrease in thermal stability, apparent viscosity, and molecular weight (Mw). The dynamic interfacial rheological properties showed that the interfacial pressure and modulus (E) decreased significantly with the decrease of functional groups (especially proteins), which also led to the bimodal distribution of particle size. These results indicated that the superior emulsification property of SBP is mainly determined by proteins, followed by ferulic acid, and the existence of other functional groups also promotes the emulsification property of SBP.


Assuntos
Beta vulgaris/química , Emulsões/química , Enzimas/metabolismo , Pectinas/metabolismo , Reologia , Adsorção , Difusão , Elasticidade , Cinética , Peso Molecular , Óleos/química , Tamanho da Partícula , Pressão , Espectroscopia de Prótons por Ressonância Magnética , Espectroscopia de Infravermelho com Transformada de Fourier , Eletricidade Estática , Termogravimetria , Fatores de Tempo , Viscosidade , Água/química
13.
Microb Pathog ; 141: 103980, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-31962183

RESUMO

The purpose of this study was to evaluate the antibacterial activity and mechanism of linalool against Pseudomonas aeruginosa. The determination of antibacterial activity was based on the minimum inhibitory concentration (MIC) and the minimum bactericide concentration (MBC). Further, the antibacterial mechanism was explored by a growth curve assay, scanning electron microscopy (SEM), cell membrane permeability, membrane potential and respiratory chain dehydrogenase determination. The MIC and the MBC of linalool were 431 µg/mL and 862 µg/mL, respectively. The growth curve assay showed that the growth of P. aeruginosa was inhibited. The results of SEM revealed that linalool disrupted the normal morphology of the cell. The release of nucleic acids as well as the decrease in the membrane potential proved that the membrane integrity of P. aeruginosa was destroyed. Moreover, the respiratory chain was damaged by respiratory chain dehydrogenase determination as the absorbance at 490 nm decreased. This research suggested that it was possible for linalool to become a preservative of food by destroying the cell membrane, resulting in cell death.


Assuntos
Monoterpenos Acíclicos/farmacologia , Antibacterianos/farmacologia , Pseudomonas aeruginosa/efeitos dos fármacos , Membrana Celular/efeitos dos fármacos , Complexo I de Transporte de Elétrons/metabolismo , Potenciais da Membrana/efeitos dos fármacos , Testes de Sensibilidade Microbiana , Mitocôndrias/efeitos dos fármacos , Pseudomonas aeruginosa/ultraestrutura
14.
Vet Res ; 51(1): 118, 2020 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-32933581

RESUMO

Cyclic GMP-AMP (cGAMP) synthase (cGAS) is an intracellular sensor of cytoplasmic viral DNA created during virus infection, which subsequently activates the stimulator of interferon gene (STING)-dependent type I interferon response to eliminate pathogens. In contrast, viruses have developed different strategies to modulate this signalling pathway. Pseudorabies virus (PRV), an alphaherpesvirus, is the causative agent of Aujeszky's disease (AD), a notable disease that causes substantial economic loss to the swine industry globally. Previous reports have shown that PRV infection induces cGAS-dependent IFN-ß production, conversely hydrolysing cGAMP, a second messenger synthesized by cGAS, and attenuates PRV-induced IRF3 activation and IFN-ß secretion. However, it is not clear whether PRV open reading frames (ORFs) modulate the cGAS-STING-IRF3 pathway. Here, 50 PRV ORFs were screened, showing that PRV UL13 serine/threonine kinase blocks the cGAS-STING-IRF3-, poly(I:C)- or VSV-mediated transcriptional activation of the IFN-ß gene. Importantly, it was discovered that UL13 phosphorylates IRF3, and its kinase activity is indispensable for such an inhibitory effect. Moreover, UL13 does not affect IRF3 dimerization, nuclear translocation or association with CREB-binding protein (CBP) but attenuates the binding of IRF3 to the IRF3-responsive promoter. Consistent with this, it was discovered that UL13 inhibits the expression of multiple interferon-stimulated genes (ISGs) induced by cGAS-STING or poly(I:C). Finally, it was determined that PRV infection can activate IRF3 by recruiting it to the nucleus, and PRVΔUL13 mutants enhance the transactivation level of the IFN-ß gene. Taken together, the data from the present study demonstrated that PRV UL13 inhibits cGAS-STING-mediated IFN-ß production by phosphorylating IRF3.


Assuntos
Herpesvirus Suídeo 1/fisiologia , Fator Regulador 3 de Interferon/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Transdução de Sinais , Proteínas Virais/metabolismo , Células A549 , Animais , Cães , Células HEK293 , Herpesvirus Suídeo 1/enzimologia , Humanos , Interferon beta/metabolismo , Células Madin Darby de Rim Canino , Fosforilação
15.
Molecules ; 25(3)2020 Feb 04.
Artigo em Inglês | MEDLINE | ID: mdl-32033016

RESUMO

Vitamin E (VE) and ß-cyclodextrin (ß-CD) can form an inclusion complex; however, the inclusion rate is low because of the weak interaction between VE and ß-CD. The results of a molecular docking study showed that the oxygen atom in the five-membered ring of octenyl succinic anhydride (OSA) formed a strong hydrogen bond interaction (1.89 Å) with the hydrogen atom in the hydroxyl group of C-6. Therefore, ß-CD was modified using OSA to produce octenyl succinic-ß-cyclodextrin (OCD). The inclusion complexes were then prepared using OCD with VE. The properties of the inclusion complex were investigated by Fourier-transform infrared spectroscopy (FT-IR), 13C CP/MAS NMR, scanning electron microscopy (SEM), and atomic force microscopy (AFM). The results demonstrated that VE had been embedded into the cavity of OCD. Furthermore, the emulsifying properties (particle size distribution, ζ-potential, and creaming index) of the OCD/VE inclusion-complex-stabilized emulsion were compared with that stabilized by ß-CD, OCD, and an OCD/VE physical mixture. The results showed that the introduction of the OS group and VE could improve the physical stability of the emulsion. In addition, the OCD/VE inclusion complex showed the strongest ability to protect the oil in the emulsion from oxidation. OCD/VE inclusion complex was able to improve the physical and oxidative stability of the emulsion, which is of great significance to the food industry.


Assuntos
Emulsões/química , Conservação de Alimentos/métodos , Succinatos/química , Vitamina E/química , beta-Ciclodextrinas/química , Antioxidantes/química , Indústria Alimentícia/métodos , Peroxidação de Lipídeos/efeitos dos fármacos , Microscopia de Força Atômica , Simulação de Acoplamento Molecular , Ressonância Magnética Nuclear Biomolecular , Espectroscopia de Infravermelho com Transformada de Fourier
16.
Environ Geochem Health ; 42(11): 3995-4010, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32661876

RESUMO

Vetiver grass (Vetiveria zizanioides L. Nash) has a great application potential to the phytoremediation of heavy metals pollution. However, few studies explored the bioavailability and distribution of different speciations of As and Sb in V. zizanioides. This study aimed to clarify the allocation and accumulation of two inorganic species arsenic (As(III) and As(V)) and antimony (Sb(III) and Sb(V)) in V. zizanioides, to understand the self-defense mechanisms of V. zizanioides to these metal(loids) elements. Thus, an experiment was conducted under greenhouse conditions to identify distribution of As and Sb in plant roots and shoots. Antioxidant enzymes (superoxide dismutase, SOD) and changes of subcellular structures were tested to evaluate metal(loids) tolerance capacities of V. zizanioides. This study demonstrated that V. zizanioides had higher capacity to accumulate Sb than As. For Sb absorption, Sb(III) content is significantly higher than Sb(V) in tissues of V. zizanioides under all concentration levels, despite the oxidation of Sb(III) on the nutrient solution surface. Additional Sb was mainly accumulated in plant roots due to Sb immobilization by transforming it into precipitates. As was more easily transferred to aerial tissues and had low accumulation rates, probably due to its restricted uptake rather than restricted transport. In many cases, two inorganic species of As and Sb showed almost same biotoxicity to V. zizanioides estimated from its biomass, SOD activity, and MDA content as well as functional groups. In summary, the results of this study provide new insights into understanding allocation, accumulation and phytotoxicity effects of arsenic and antimony in V. zizanioides. Schematic diagram of distribution of and biochemical responses to As(III), As(V), Sb(III), and Sb(V) in tissue of V. zizanioides.


Assuntos
Antimônio/farmacocinética , Arsênio/farmacocinética , Vetiveria/efeitos dos fármacos , Antimônio/análise , Arsênio/análise , Bioacumulação , Biodegradação Ambiental , Disponibilidade Biológica , Biomassa , Vetiveria/fisiologia , Hidroponia , Malondialdeído/metabolismo , Raízes de Plantas/química , Raízes de Plantas/efeitos dos fármacos , Raízes de Plantas/metabolismo , Superóxido Dismutase/metabolismo , Distribuição Tecidual
17.
Zhong Nan Da Xue Xue Bao Yi Xue Ban ; 45(6): 613-619, 2020 Jun 28.
Artigo em Inglês, Zh | MEDLINE | ID: mdl-32879116

RESUMO

OBJECTIVES: The coronavirus disease 2019 (COVID-19) pandemic is a global public health crisis, which elicits psychological problems in different population. This study is to investigate the impact of COVID-19 on mental health in the front-line staff. METHODS: Patient Health Questionnare-9 (PHQ-9), Self-Rating Anxiety Scale (SAS), and Fatigue Self-assessment Scale (FSAS) were used to assess the depression, anxiety, and fatigue in front-line staff. RESULTS: The detection rates of depression, anxiety, and fatigue were 49.1%, 21.8%, and 76.0% among the front-line staff. The rates of depression, anxiety, and fatigue in community workers were higher than those in medical workers and other occupational staff (P<0.01). The PHQ-9 of front-line staffs was negatively correlated with age, family income, family members' support, satisfaction of service objects, and sleep quality (all P<0.01), while positively correlated with education level, fatigue, fear of pneumonia, and the duration of daily attention to the COVID-19 (all P<0.01). SAS was negatively correlated with age, family income, family support, satisfaction of objects service, and sleep quality (all P<0.01), while positively correlated with gender, fatigue, fear of pneumonia, and duration of daily attention to the COVID-19 (all P<0.01). CONCLUSIONS: The front-line workers should manage work and rest time reasonably to adjust their negative mood and fatigue. The government and the society should pay more attention to the psychological state of the front-line staff, particularly for the staff working in the community or villages and towns in preventing the COVID-19 pandemic. Thus, front-line staff can be obtained mental intervention or be taken a rest from the high-intensive work.


Assuntos
Infecções por Coronavirus/psicologia , Pessoal de Saúde/psicologia , Saúde Mental , Pneumonia Viral/psicologia , Ansiedade/diagnóstico , Betacoronavirus , COVID-19 , Infecções por Coronavirus/prevenção & controle , Depressão/diagnóstico , Fadiga/diagnóstico , Humanos , Pandemias/prevenção & controle , Pneumonia Viral/prevenção & controle , SARS-CoV-2
18.
Int J Neuropsychopharmacol ; 22(2): 143-156, 2019 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-30407503

RESUMO

Background: Phosphodiesterase 4 is a promising target for developing novel antidepressants. However, prototype phosphodiesterase 4 inhibitors show severe side effects, including nausea and vomiting. N-Isopropyl-3-(cyclopropylmethoxy)-4-difluoromethoxy benzamide (FCPR03) is a novel phosphodiesterase 4 inhibitor with little emetic potential. In the present study, we investigated the inhibitory effect of FCPR03 on chronic unpredictable mild stress-induced, depressive-like behaviors in mice and explored the underlying mechanisms. Methods: The depression model of mice was established by chronic unpredictable mild stress. Forced swim test, tail suspension test, and sucrose preference test were used to assess depressive-like behaviors. Golgi-staining was utilized to analyze dendritic morphology and spine density. The level of cAMP was measured by enzyme-linked immnosorbent assay assay. Western blot was used to evaluate protein levels of phosphorylated cAMP-response element binding protein, protein kinase B, glycogen synthase kinase-3ß, and brain derived neurotrophic factor in both hippocampus and prefrontal cortex. Postsynaptic density protein 95 and synapsin 1 were also detected by western blot in the hippocampi. Results: Treatment with FCPR03 (0.5-1.0 mg/kg, i.p.) increased consumption of sucrose in the sucrose preference test in mice exposed to chronic unpredictable mild stress. FCPR03 shortened the immobility time in forced swim test and tail suspension test without affecting locomotor activity. Furthermore, chronic unpredictable mild stress decreased the dendritic spine density and dendritic length in the hippocampus. This change was accompanied by decreased expression of postsynaptic density protein 95 and synapsin 1. Interestingly, FCPR03 prevented dendritic spine loss and increased synaptic protein levels. Moreover, the levels of cAMP, phosphorylated cAMP-response element binding protein, and brain derived neurotrophic factor were elevated in chronic unpredictable mild stress-challenged mice after treatment with FCPR03. In addition, FCPR03 also enhanced the phosphorylation of both protein kinase B and glycogen synthase kinase-3ß in mice exposed to chronic unpredictable mild stress. Conclusion: The present study suggests that FCPR03 could prevent both depressive-like behaviors and spine loss induced by chronic unpredictable mild stress in the mice hippocampi.


Assuntos
Comportamento Animal/efeitos dos fármacos , Benzamidas/farmacologia , Espinhas Dendríticas/efeitos dos fármacos , Depressão/tratamento farmacológico , Hipocampo/efeitos dos fármacos , Inibidores da Fosfodiesterase 4/farmacologia , Estresse Psicológico/complicações , Animais , Espinhas Dendríticas/patologia , Depressão/etiologia , Modelos Animais de Doenças , Hipocampo/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL
19.
Molecules ; 24(23)2019 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-31795169

RESUMO

The aim of this study was to develop a nondairy fermented product based on mango slurry. Lactobacillus plantarum and Saccharomyces cerevisiae DV10 were used as starter cultures in single and co-cultivations. The microbial populations and metabolites produced during mango slurry fermentation were investigated. At the end of all fermentations, the bacterial populations were higher than 6.0 log CFU/mL. Lactic acid was the main organic acid produced, achieving up to 6.12 g/L after 24 h in co-culture with L. plantarum and S. cerevisiae DV10. Volatile compounds were determined after 24 h of fermentation, the co-cultures of L. plantarum and S. cerevisiae DV10 could decrease terpenes and produce alcohols and esters. The co-cultivations obtained the most total phenolics as well as showed the strongest 2,2'-azinobis-(3-ethylbenzothiazoline-6-sulfonate) (ABTS) radical scavenging activity, ferric-reducing antioxidant power (FRAP) and low-density lipoprotein (LDL) oxidation inhibition. Hence, a high-bioactivity probiotic product was successfully obtained via mango slurry fermentation inoculated with a co-culture of L. plantarum and S. cerevisiae DV10.


Assuntos
Fermentação , Lactobacillus plantarum/metabolismo , Mangifera/química , Saccharomyces cerevisiae/metabolismo , Antioxidantes/química , Antioxidantes/farmacologia , Microbiologia de Alimentos , Oxirredução , Compostos Orgânicos Voláteis/química , Compostos Orgânicos Voláteis/farmacologia
20.
Molecules ; 24(23)2019 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-31795396

RESUMO

The aim of this study was to prepare sodium alginates (SAs) with different molecular weight and G/M ratio, and characterize their rheological behaviors and emulsifying properties. The result of Fourier transform infrared (FTIR) showed that the chemical bonds among the ß-d-mannuronic acid- (M-), α-l-guluronic acid- (G-), and MG-sequential blocks in the SA chains were not changed significantly by acid treatment. Meanwhile, the molecular weight and G/M ratio of the SA exhibited drastic variation after acid modification. The result of rheological analysis suggesting that the apparent viscosity of SA reduced from 30 to 16.4 mPa.s with the increase of shear rate, reveals that SA solution belongs to pseudoplastic liquid. Also, the apparent viscosity of acid-modified SA solution dropped rapidly with the decrease of the molecular weight. The properties of emulsions stabilized by SA, SA-Ms, and commercial SAs were evaluated via the interface tensiometry and determination of the zeta potential, droplet size, creaming index (CI), and Turbiscan stability index (TSI). Compared with the SA-stabilized emulsion, the interfacial tension of the emulsion stabilized by SA-M increased with the decrease of the molecular weight reduced at the similar M/G ratio. The decrease in zeta potential and the increase in TSI of the emulsion were observed with the decrease of molecular weight, indicating that molecular weight plays an important role on the emulsifying ability of SA. In addition, the SA with low G/M ratio can form emulsions with stable and fine droplets.


Assuntos
Alginatos/química , Ácidos Hexurônicos/química , Emulsões , Reologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA