Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 72
Filtrar
1.
Pharmacol Res ; 203: 107184, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38615874

RESUMO

Inflammatory bowel disease (IBD) is a long-lasting and inflammatory autoimmune condition affecting the gastrointestinal tract, impacting millions of individuals globally. The balance between T helper 17 (Th17) cells and regulatory T cells (Tregs) is pivotal in the pathogenesis and progression of IBD. This review summarizes the pivotal role of Th17/Treg balance in maintaining intestinal homeostasis, elucidating how its dysregulation contributes to the development and exacerbation of IBD. It comprehensively synthesizes the current understanding of how dietary factors regulate the metabolic pathways influencing Th17 and Treg cell differentiation and function. Additionally, this review presents evidence from the literature on the potential of dietary regimens to regulate the Th17/Treg balance as a strategy for the management of IBD. By exploring the intersection between diet, metabolic regulation, and Th17/Treg balance, the review reveals innovative therapeutic approaches for IBD treatment, offering a promising perspective for future research and clinical practice.


Assuntos
Doenças Inflamatórias Intestinais , Linfócitos T Reguladores , Células Th17 , Humanos , Doenças Inflamatórias Intestinais/imunologia , Doenças Inflamatórias Intestinais/metabolismo , Células Th17/imunologia , Linfócitos T Reguladores/imunologia , Animais , Dieta
2.
Pharmacol Res ; 204: 107194, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38663526

RESUMO

Antibiotic related intestinal injury in early life affects subsequent health and susceptibility. Here, we employed weaned piglets as a model to investigate the protective effects of baicalin against early-life antibiotic exposure-induced microbial dysbiosis. Piglets exposed to lincomycin showed a marked reduction in body weight (p < 0.05) and deterioration of jejunum intestinal morphology, alongside an increase in antibiotic-resistant bacteria such as Staphylococcus, Dolosicoccus, Escherichia-Shigella, and Raoultella. In contrast, baicalin treatment resulted in body weights, intestinal morphology, and microbial profiles that closely resembled those of the control group (p > 0.05), with a significant increase in norank_f_Muribaculaceae and Prevotellaceae_NK3B31_group colonization compared with lincomycin group (p < 0.05). Further analysis through fecal microbial transplantation into mice revealed that lincomycin exposure led to significant alterations in intestinal morphology and microbial composition, notably increasing harmful microbes and decreasing beneficial ones such as norank_Muribaculaceae and Akkermansia (p < 0.05). This shift was associated with an increase in harmful metabolites and disruption of the calcium signaling pathway gene expression. Conversely, baicalin supplementation not only counteracted these effects but also enhanced beneficial metabolites and regulated genes within the MAPK signaling pathway (MAP3K11, MAP4K2, MAPK7, MAPK13) and calcium channel proteins (ORA13, CACNA1S, CACNA1F and CACNG8), suggesting a mechanism through which baicalin mitigates antibiotic-induced intestinal and microbial disturbances. These findings highlight baicalin's potential as a plant extract-based intervention for preventing antibiotic-related intestinal injury and offer new targets for therapeutic strategies.


Assuntos
Antibacterianos , Flavonoides , Microbioma Gastrointestinal , Lincomicina , Sistema de Sinalização das MAP Quinases , Animais , Flavonoides/farmacologia , Flavonoides/uso terapêutico , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Microbioma Gastrointestinal/efeitos dos fármacos , Suínos , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Lincomicina/farmacologia , Camundongos , Disbiose/induzido quimicamente , Disbiose/tratamento farmacológico , Masculino , Intestinos/efeitos dos fármacos , Intestinos/patologia
3.
Int J Mol Sci ; 25(11)2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38891778

RESUMO

Infants and young animals often suffer from intestinal damage caused by oxidative stress, which may adversely affect their overall health. Hydroxytyrosol, a plant polyphenol, has shown potential in decreasing intestinal oxidative stress, but its application and mechanism of action in infants and young animals are still inadequately documented. This study selected piglets as a model to investigate the alleviating effects of hydroxytyrosol on intestinal oxidative stress induced by diquat and its potential mechanism. Hydroxytyrosol improved intestinal morphology, characterized by higher villus height and villus height/crypt depth. Meanwhile, hydroxytyrosol led to higher expression of Occludin, MUC2, Nrf2, and its downstream genes, and lower expression of cytokines IL-1ß, IL-6, and TNF-α. Both oxidative stress and hydroxytyrosol resulted in a higher abundance of Clostridium_sensu_stricto_1, and a lower abundance of Lactobacillus and Streptococcus, without a significant effect on short-chain fatty acids levels. Oxidative stress also led to disorders in bile acid (BA) metabolism, such as the lower levels of primary BAs, hyocholic acid, hyodeoxycholic acid, and tauroursodeoxycholic acid, which were partially restored by hydroxytyrosol. Correlation analysis revealed a positive correlation between these BA levels and the expression of Nrf2 and its downstream genes. Collectively, hydroxytyrosol may reduce oxidative stress-induced intestinal damage by regulating BA metabolism.


Assuntos
Ácidos e Sais Biliares , Mucosa Intestinal , Estresse Oxidativo , Álcool Feniletílico , Animais , Estresse Oxidativo/efeitos dos fármacos , Álcool Feniletílico/análogos & derivados , Álcool Feniletílico/farmacologia , Suínos , Ácidos e Sais Biliares/metabolismo , Mucosa Intestinal/metabolismo , Mucosa Intestinal/efeitos dos fármacos , Mucosa Intestinal/patologia , Intestinos/efeitos dos fármacos , Intestinos/patologia , Modelos Animais de Doenças , Microbioma Gastrointestinal/efeitos dos fármacos , Fator 2 Relacionado a NF-E2/metabolismo , Fator 2 Relacionado a NF-E2/genética
4.
J Sci Food Agric ; 104(9): 5296-5304, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38308576

RESUMO

BACKGROUND: Dietary fibers with varying physicochemical properties have different fermentation characteristics, which may differently impact host health. The present study aimed to determine the fermentation characteristics including gas production kinetics, short-chain fatty acids (SCFAs) production and microbial composition of different fibrous ingredients using in vitro fermentation by fecal microbiota. RESULTS: Sugar beet pule (SBP), wheat bran (WB), dried corn distillers grains with solubles (DDGS), rice bran (RB) and alfalfa meal (AM) were selected to fermentation in vitro for 36 h. The results showed that SBP had the greatest gas production. SBP had the highest in vitro dry matter fermentability (IVDMF) and production of acetate, propionate and total SCFAs, followed by WB, which were all greater than DDGS, AM and RB. The alpha-diversity was higher in the DDGS, AM and RB groups than in the WB and SBP groups. Differences in microbial community composition were observed among groups. The relative abundance of Treponema was highest in WB group. RB group showed lower Prevotella abundance than other groups but had higher Succinivibrio abundance. Interestingly, the Lactobacillus reached the highest abundances in the DDGS group. Correlation analysis indicated that the relative abundance of Treponema and Prevotella was positively associated with the gas production, IVDMF and SCFAs, whereas norank_f_Muribaculaceae, Rikenellaceae_RC9_gut_group, Lysinibacillus and Succinivibrio were the opposite. CONCLUSION: Collectively, WB and SBP were fermented rapidly by fecal microbiota compared to DDGS, AM and RB. Different fiber sources have different fiber compositions and fermentation properties that affect the microbial compositins and SCFAs production. © 2024 Society of Chemical Industry.


Assuntos
Ração Animal , Bactérias , Fibras na Dieta , Ácidos Graxos Voláteis , Fezes , Fermentação , Microbioma Gastrointestinal , Fibras na Dieta/metabolismo , Fibras na Dieta/análise , Fezes/microbiologia , Animais , Bactérias/metabolismo , Bactérias/classificação , Bactérias/genética , Bactérias/isolamento & purificação , Ácidos Graxos Voláteis/metabolismo , Suínos , Ração Animal/análise , Zea mays/química , Zea mays/metabolismo , Beta vulgaris/química , Beta vulgaris/metabolismo , Beta vulgaris/microbiologia , Medicago sativa/química , Medicago sativa/metabolismo , Medicago sativa/microbiologia , Oryza/metabolismo , Oryza/química , Oryza/microbiologia
5.
Int J Mol Sci ; 24(15)2023 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-37569498

RESUMO

Bile acids (BAs) are well known to facilitate the absorption of dietary fat and fat-soluble molecules. These unique steroids also function by binding to the ubiquitous cell membranes and nuclear receptors. As chemical signals in gut-liver axis, the presence of metabolic disorders such as nonalcoholic fatty liver disease (NAFLD), type 2 diabetes mellitus (T2DM), and even tumors have been reported to be closely related to abnormal levels of BAs in the blood and fecal metabolites of patients. Thus, the gut microbiota interacting with BAs and altering BA metabolism are critical in the pathogenesis of numerous chronic diseases. This review intends to summarize the mechanistic links between metabolic disorders and BAs in gut-liver axis, and such stage-specific BA perturbation patterns may provide clues for developing new auxiliary diagnostic means.


Assuntos
Diabetes Mellitus Tipo 2 , Hepatopatia Gordurosa não Alcoólica , Humanos , Ácidos e Sais Biliares/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Fígado/metabolismo , Hepatopatia Gordurosa não Alcoólica/metabolismo , Biomarcadores/metabolismo
6.
Mol Med ; 28(1): 45, 2022 04 25.
Artigo em Inglês | MEDLINE | ID: mdl-35468731

RESUMO

BACKGROUND: Clinical data suggest that male reproductive dysfunction especially infertility is a critical issue for type 1 diabetic patient (T1D) because most of them are at the reproductive age. Gut dysbiosis is involved in T1D related male infertility. However, the improved gut microbiota can be used to boost spermatogenesis and male fertility in T1D remains incompletely understood. METHODS: T1D was established in ICR (CD1) mice with streptozotocin. Alginate oligosaccharide (AOS) improved gut microbiota (fecal microbiota transplantation (FMT) from AOS improved gut microbiota; A10-FMT) was transplanted into the T1D mice by oral administration. Semen quality, gut microbiota, blood metabolism, liver, and spleen tissues were determined to investigate the beneficial effects of A10-FMT on spermatogenesis and underlying mechanisms. RESULTS: We found that A10-FMT significantly decreased blood glucose and glycogen, and increased semen quality in streptozotocin-induced T1D subjects. A10-FMT improved T1D-disturbed gut microbiota, especially the increase in small intestinal lactobacillus, and blood and testicular metabolome to produce n-3 polyunsaturated fatty acid (PUFA) docosahexaenoic acid (DHA) and eicosapentaenoic acid (EPA) to ameliorate spermatogenesis and semen quality. Moreover, A10-FMT can improve spleen and liver functions to strengthen the systemic environment for sperm development. FMT from gut microbiota of control animals (Con-FMT) produced some beneficial effects; however, to a smaller extent. CONCLUSIONS: AOS-improved gut microbiota (specific microbes) may serve as a novel, promising therapeutic approach for the improvement of semen quality and male fertility in T1D patients via gut microbiota-testis axis.


Assuntos
Diabetes Mellitus Tipo 1 , Microbioma Gastrointestinal , Animais , Diabetes Mellitus Tipo 1/terapia , Transplante de Microbiota Fecal , Humanos , Masculino , Camundongos , Camundongos Endogâmicos ICR , Análise do Sêmen , Estreptozocina , Testículo
7.
J Appl Microbiol ; 132(3): 1760-1767, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-34787953

RESUMO

AIM: Weaning stress can cause serious damage to piglet's health. Chlortetracycline (CTC) is widely used to ameliorate weaning stress and prevent infectious diseases in weaned piglets. However, antibiotics as growth promoters have to be limited because of increased antimicrobial resistance. In this study, we evaluated the effects of CTC on growth performance and intestinal functions in order to provide evidence for seeking antibiotic substitutes in weaned piglets. METHODS AND RESULTS: A total of 20 weaned piglets were fed a basal diet or a diet supplemented with 75 mg/kg CTC. CTC decreased the crypt depth and increased the ratio of villus height to crypt depth, whilst failing to affect growth performance and serum biochemical parameters and cytokines. 16S rRNA sequencing suggested that CTC supplementation had no effect on the diversity and composition of colonic microbiota. CONCLUSION: We speculated that gut microbiota is no longer sensitive to a low concentration of CTC due to the long-term use and low bioavailability of CTC in weaned piglets.


Assuntos
Clortetraciclina , Animais , Clortetraciclina/farmacologia , Dieta , Suplementos Nutricionais/análise , RNA Ribossômico 16S/genética , Suínos , Desmame
8.
Int J Mol Sci ; 23(11)2022 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-35682750

RESUMO

The adverse effects of short-term megadose of antibiotics exposure on the gastrointestinal and liver tissue reactions in young children have been reported. Antibiotic-induced intestinal and liver reactions are usually unpredictable and present a poorly understood pathogenesis. It is, therefore, necessary to develop strategies for reducing the adverse effects of antibiotics. Studies on the harm and rescue measures of antibiotics from the perspective of the gut-liver system are lacking. Here, we demonstrate that lincomycin exposure reduced body weight, disrupted the composition of gut microbiota and intestinal morphology, triggered immune-mediated injury and inflammation, caused liver dysfunction, and affected lipid metabolism. However, baicalin administration attenuated the lincomycin-induced changes. Transcriptome analysis showed that baicalin improved immunity in mice, as evidenced by the decreased levels of intestinal inflammatory cytokines and expression of genes that regulate Th1, Th2, and Th17 cell differentiation, and inhibited mucin type O-glycan biosynthesis pathways. In addition, baicalin improved liver function by upregulating the expression of genes involved in bile acid secretion and lipid degradation, and downregulating genes involved in lipid synthesis in lincomycin-treated mice. Bile acids can regulate intestinal immunity and strengthen hepatoenteric circulation. In addition, baicalin also improved anti-inflammatory bacteria abundance (Blautia and Coprobacillus) and reduced pathogenic bacteria abundance (Proteobacteria, Klebsiella, and Citrobacter) in lincomycin-treated mice. Thus, baicalin can ameliorate antibiotic-induced injury and its associated complications such as liver disease.


Assuntos
Inflamação , Lincomicina , Animais , Antibacterianos/efeitos adversos , Antibacterianos/metabolismo , Pré-Escolar , Flavonoides , Humanos , Inflamação/patologia , Lincomicina/metabolismo , Lincomicina/farmacologia , Lipídeos/farmacologia , Fígado/metabolismo , Camundongos , Camundongos Endogâmicos C57BL
9.
Int J Mol Sci ; 23(16)2022 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-36012616

RESUMO

Dysregulated lipid metabolism is a key pathology in metabolic diseases and the liver is a critical organ for lipid metabolism. The gut microbiota has been shown to regulate hepatic lipid metabolism in the host. However, the underlying mechanism by which the gut microbiota influences hepatic lipid metabolism has not been elucidated. Here, a gut microbiota depletion mouse model was constructed with an antibiotics cocktail (Abx) to study the mechanism through which intestinal microbiota regulates hepatic lipid metabolism in high-fat diet (HFD)-fed mice. Our results showed that the Abx treatment effectively eradicated the gut microbiota in these mice. Microbiota depletion reduced the body weight and fat deposition both in white adipose tissue and liver. In addition, microbiota depletion reduced serum levels of glucose, total cholesterol (TC), low-density lipoproteins (LDL), insulin, and leptin in HFD-fed mice. Importantly, the depletion of gut microbiota in HFD-fed mice inhibited excessive hepatic lipid accumulation. Mechanistically, RNA-seq results revealed that gut microbiota depletion changed the expression of hepatic genes involved in cholesterol and fatty acid metabolism, such as Cd36, Mogat1, Cyp39a1, Abcc3, and Gpat3. Moreover, gut microbiota depletion reduced the abundance of bacteria associated with abnormal metabolism and inflammation, including Lachnospiraceae, Coriobacteriaceae_UCG-002, Enterorhabdus, Faecalibaculum, and Desulfovibrio. Correlation analysis showed that there was strong association between the altered gut microbiota abundance and the serum cholesterol level. This study indicates that gut microbiota ameliorates HFD-induced hepatic lipid metabolic dysfunction, which might be associated with genes participating in cholesterol and fatty acid metabolism in the liver.


Assuntos
Dieta Hiperlipídica , Microbioma Gastrointestinal , Animais , Colesterol/metabolismo , Dieta Hiperlipídica/efeitos adversos , Ácidos Graxos/metabolismo , Metabolismo dos Lipídeos , Fígado/metabolismo , Camundongos , Camundongos Endogâmicos C57BL
10.
Appl Microbiol Biotechnol ; 105(21-22): 8441-8456, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34651253

RESUMO

Increasing evidence suggests that antibiotic administration causes gut injury, negatively affecting nutrient digestion, immune regulation, and colonization resistance against pathogens due to the disruption of gut microbiota. However, the time-course effects of therapeutic antibiotics on alterations of gut microbes and short-chain fatty acids (SCFAs) in young swine are still unknown. In this study, twenty piglets were assigned into two groups and fed commercial diets with or without lincomycin in the first week for a 28-day trial period. Results showed that 1-week lincomycin exposure (LE) did reduce the body weight on day 14 (p = 0.0450) and 28 (p = 0.0362). The alpha-diversity notably reduced after 1-week LE, and then gradually raised and reached the control group level in the second week on cessation of LE, indicated by the variation of Sobs, Chao, Shannon, and ACE index (p < 0.05). Beta-diversity analysis revealed that the distinct microbial cluster existed persistently for the whole trial period between two groups (p < 0.001). The relative abundance of most microbes including fiber-degrading (e.g., Agathobacter and Coprococcus), beneficial (e.g., Lactobacillus and Mitsuokella), or pathogenic bacteria (e.g., Terrisporobacter and Lachnoclostridium) decreased (LDA score > 3), and the concentration of SCFAs also diminished in the feces of 1-week lincomycin-administrated young swine, indicating that therapeutic LE killed most bacteria and reduced SCFA production with gut dysbiosis occurring. After the LE stopped, the state of gut dysbiosis gradually attenuated and formed new gut-microbe homeostasis distinct from microbial homeostasis of young pigs unexposed to lincomycin. The increased presence of potential pathogens, such as Terrisporobacter, Negativibacillus, and Escherichia-Shigella, and decreased beneficial bacteria, such as Lactobacillus and Agathobacter, were observed in new homeostasis reshaped by short-lincomycin administration (LDA score > 3 or p < 0.05), adversely affecting gut development and health of young pigs. Collectively, these results suggested that severe disruption of the commensal microbiota occurred after short-term LE or termination of LE in young swine. KEY POINTS: • Therapeutic lincomycin exposure induced gut dysbiosis, killing most bacteria and reducing short-chain fatty acid production. • Gut dysbiosis gradually attenuated and formed new homeostasis after lincomycin exposure stopped. • The new homeostasis, increased Escherichia-Shigella etc. and decreased Lactobacillus etc., was potentially harmful to gut health.


Assuntos
Microbioma Gastrointestinal , Animais , Disbiose , Ácidos Graxos Voláteis , Fezes , Lincomicina , Suínos
11.
Int J Mol Sci ; 22(19)2021 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-34638730

RESUMO

Intestinal dysfunction of farm animals, such as intestinal inflammation and altered gut microbiota, is the critical problem affecting animal welfare, performance and farm profitability. China has prohibited the use of antibiotics to improve feed efficiency and growth performance for farm animals, including poultry, in 2020. With the advantages of maintaining gut homeostasis, enhancing digestion, and absorption and modulating gut microbiota, organic acids are regarded as promising antibiotic alternatives. Butyric and citric acids as presentative organic acids positively impact growth performance, welfare, and intestinal health of livestock mainly by reducing pathogenic bacteria and maintaining the gastrointestinal tract (GIT) pH. This review summarizes the discovery of butyric acid (BA), citric acid (CA) and their salt forms, molecular structure and properties, metabolism, biological functions and their applications in poultry nutrition. The research findings about BA, CA and their salts on rats, pigs and humans are also briefly reviewed. Therefore, this review will fill the knowledge gaps of the scientific community and may be of great interest for poultry nutritionists, researchers and feed manufacturers about these two weak organic acids and their effects on intestinal health and gut microbiota community, with the hope of providing safe, healthy and nutrient-rich poultry products to consumers.


Assuntos
Ração Animal , Ácido Butírico/farmacologia , Ácido Cítrico/farmacologia , Microbioma Gastrointestinal/efeitos dos fármacos , Mucosa Intestinal/microbiologia , Aves Domésticas/microbiologia , Animais
12.
Arch Anim Nutr ; 75(6): 465-473, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-35253543

RESUMO

In this study, the effects of dietary fibre and types of indigestible markers (IM) on the apparent total tract digestibility (ATTD) of gross energy (GE) and nutrients as well as IM recovery in diets fed to growing pigs were investigated. A total of 30 barrows (initial body weight 40.5 ± 1.4 kg) were allotted to five experimental diets, based on a completely randomised block design, with body weight as a blocking factor. The five diets comprised a corn-soya bean meal basal diet, and four diets in which sugar beet pulp (SBP) or defatted rice bran (DFRB) partly replaced 10% or 20% of corn, soya bean meal and soya bean oil in the basal diet. All diets were formulated to contain two types of IM, namely 0.5% chromic oxide (Cr) and 1.0% celite as the source of acid-insoluble ash (AIA). Animals were subjected to a 7-d adaptation period, and their faeces were collected over a 5-d period using the total faecal collection (TC) method. Results showed that the AIA method determined similar ATTD of GE and nutrients as the TC method. Values of dietary nutrients determined via AIA and TC methods were significantly higher than those obtained by Cr (p < 0.05). The ATTD of GE and nutrients linearly decreased with an increased inclusion level of SBP or DFRB (p < 0.01), whereas recoveries of AIA and Cr were not affected by the aforementioned inclusions. Results from the faecal analysis revealed that AIA recovery (90.5%) was significantly higher than that of Cr (84.9%, p < 0.05), while diets with DFRB (91.3%) had significantly greater IM recovery rates than those with SBP (84.4%, p < 0.05). In conclusion, the type of dietary fibre, rather than the level, significantly affects IM recovery. Notably, AIA should be preferred to Cr when using the IM method to determine ATTD of GE and nutrients for diets in growing pigs.


Assuntos
Dieta , Digestão , Ração Animal/análise , Fenômenos Fisiológicos da Nutrição Animal , Animais , Dieta/veterinária , Fibras na Dieta , Trato Gastrointestinal , Nutrientes , Suínos , Zea mays
13.
J Sci Food Agric ; 100(15): 5450-5457, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32562272

RESUMO

BACKGROUND: The present study investigated the chronic effect on the composition and proportions of the cecal microbiota of laying hens for 12 weeks after consuming two genetically modified (GM) corns containing the maroACC gene from the Agrobacterium tumefaciens strain (CC) and the mCry1Ac gene from the Bacillus thuringiensis strain (BT) in comparison with the isogenic corn (CT). RESULTS: In total, 72 hens were randomly assigned to the CT corn-based diet, CC corn-based diet and BT corn-based diet. The absolute weights of abdominal fat, breast, thigh meat and organ weight were not affected by the dietary treatment. High-throughput 16S rRNA gene sequencing revealed a few differences in the composition of cecal microbiota among the treatments. The only difference with respect to bacterial family was that the cecal abundance of Porphyromonadaceae (3.46 versus 2.11%; P = 0.073) tended to be higher for birds consuming the CC diet than those birds consuming the CT diet. Birds fed the BT diet tended to have a higher abundance of Barnesiella (0.62 versus 0.13%; P = 0.057) and a lower abundance of unclassified Ruminococcaceae (0.64 versus 1.19%; P = 0.097) than those fed the CT diet. Considering beneficial intestinal Barnesiella, this decreases and ultimately clears the colonization of vancomycin-resistant Enterococcus. The unclassified Ruminococcaceae was a low-frequency and low-abundance bacterial taxa and was not associated with intestinal pathology. CONCLUSION: These results indicate a similar modulation of cecal microbiota in laying hens by long-term feeding among transgenic CC corn, BT corn and non-transgenic corn and provide data for biosafety evaluation of the transgenic corn. © 2020 Society of Chemical Industry.


Assuntos
Ração Animal/análise , Ceco/microbiologia , Galinhas/metabolismo , Microbioma Gastrointestinal , Plantas Geneticamente Modificadas/metabolismo , Zea mays/metabolismo , Animais , Bactérias/classificação , Bactérias/genética , Bactérias/isolamento & purificação , Ceco/metabolismo , Galinhas/microbiologia , Feminino , Plantas Geneticamente Modificadas/genética , Zea mays/genética
14.
BMC Genomics ; 17(1): 598, 2016 08 11.
Artigo em Inglês | MEDLINE | ID: mdl-27515403

RESUMO

BACKGROUND: High concentrations of atmospheric ammonia are one of the key environmental stressors affecting broiler production performance, which causes remarkable economic losses as well as potential welfare problems of the broiler industry. Previous reports demonstrated that high levels of ammonia altered body fat distribution and meat quality of broilers. However, the molecular mechanisms and metabolic pathways in breast muscle altered by high concentrations of ambient ammonia exposure on broilers are still unknown. RESULTS: This study utilized RNA-Seq to compare the transcriptomes of breast muscles to identify differentially enriched genes in broilers exposed to high and low concentrations of atmospheric ammonia. A total of 267 promising candidate genes were identified by differential expression analysis, among which 67 genes were up-regulated and 189 genes were down-regulated. Bioinformatics analysis suggested that the up and down-regulation of these genes were involved in the following two categories of cellular pathways and metabolisms: Steroid biosynthesis (gga00100) and peroxisome proliferator-activated receptor (PPAR) signaling pathway (gga03320), which both participated in the lipid metabolism processes. CONCLUSIONS: This study suggests that longtime exposure to high concentrations of aerial ammonia can change fat content in breast muscle, meat quality and palatability via altering expression level of genes participating in important lipid metabolism pathways. These findings have provided novel insights into our understanding of molecular mechanisms of breast muscles exposed to ammonia in broilers. This study provides new information that could be used for genetic breeding and nutritional intervention in production practice of broilers industry in the future.


Assuntos
Amônia/toxicidade , Metabolismo dos Lipídeos/efeitos dos fármacos , Carne/análise , Músculos Peitorais/efeitos dos fármacos , Transcriptoma , Poluentes Químicos da Água/toxicidade , Animais , Proteínas Aviárias/genética , Proteínas Aviárias/metabolismo , Distribuição da Gordura Corporal , Galinhas , Biologia Computacional , Perfilação da Expressão Gênica , Regulação da Expressão Gênica no Desenvolvimento , Ontologia Genética , Metabolismo dos Lipídeos/genética , Anotação de Sequência Molecular , Músculos Peitorais/crescimento & desenvolvimento , Músculos Peitorais/metabolismo , Receptores Ativados por Proliferador de Peroxissomo/genética , Receptores Ativados por Proliferador de Peroxissomo/metabolismo , Chuva/química , Transdução de Sinais , Esteroides/biossíntese
15.
J Sci Food Agric ; 96(12): 4207-14, 2016 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26777397

RESUMO

BACKGROUND: The objective of the present study was to investigate the chronic effect of transgenic maize lines by the insertion of the cry1Ac gene from Bacillus thuringiensis (Bt) on the growth performance, immune response and health using a Wuzhishan miniature pig model through a 196-day feeding study. RESULTS: Based on the gender and weight, 72 Wuzhishan miniature pigs were randomly assigned one of the diets containing 65% non-transgenic isogenic corn or Bt corn at three stages of growth (day 0-69, 70-134 and 135-196). The potential toxicological effects of transgenic corn on pigs were explored. No difference between the diet treatments for growth performance and haematology parameters at any stages of growth. Although subtle differences in serum content of alanine aminotransferase, relative kidney weight and some immune response were observed between the Bt group and isogenic group, they were not considered as diet treatment-related. CONCLUSION: Long-term feeding Bt corn carrying cry1Ac genes to Wuzhishan miniature pigs did not indicate adverse effects on the growth, immune response and health indicators at any stages of growth. © 2016 Society of Chemical Industry.


Assuntos
Ração Animal/efeitos adversos , Proteínas de Bactérias/genética , Endotoxinas/genética , Proteínas Hemolisinas/genética , Plantas Geneticamente Modificadas/efeitos adversos , Plantas Geneticamente Modificadas/genética , Porco Miniatura/crescimento & desenvolvimento , Zea mays/efeitos adversos , Zea mays/genética , Animais , Bacillus thuringiensis/genética , Toxinas de Bacillus thuringiensis , Linhagem Celular , Feminino , Rim/anatomia & histologia , Rim/patologia , Masculino , Modelos Animais , Plantas Geneticamente Modificadas/química , Suínos , Porco Miniatura/sangue , Porco Miniatura/imunologia , Linfócitos T/citologia , Linfócitos T/imunologia , Testes de Toxicidade , Aumento de Peso , Zea mays/química
16.
Biology (Basel) ; 13(5)2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38785799

RESUMO

In this study, a commercial sodium butyrate protected by a new buffer salt solution (NSB) was tested to determine whether it can be used as an antibiotic alternative in broiler production. A total of 192 1-day-old broilers were randomly allocated to three dietary treatments: soybean meal diet (CON), antibiotic diet (ANT, basal diet + 100 mg/kg aureomycin), and NSB (basal diet + 800 mg/kg NSB). The growth performance, serum anti-inflammatory cytokines, intestinal morphology, gut barrier function, antioxidative parameters, SCFAs' content, and cecal microbiota were analyzed. The result showed that NSB significantly improved ADFI and ADG (p < 0.01), and decreased FCR (p < 0.01). Serum anti-inflammatory cytokine IL-10 was up-regulated (p < 0.01), and pro-inflammatory TNF-α was down-regulated (p < 0.05) by NSB supplementation. H&E results showed that VH and the VH/CD ratio significantly increased (p < 0.05) in the jejunum and ileum in the NSB group. Furthermore, ZO-1 (p < 0.01), claudin-1 (p < 0.01), and occludin (p < 0.05) in the jejunum and claudin-1 (p < 0.01) and mucin-2 (p < 0.05) in the ileum were significantly up-regulated in the NSB group. Additionally, SOD (p < 0.05) and the T-AOC/MDA ratio (p < 0.01) in the jejunum and SOD in the ileum were significantly increased (p < 0.05) in the NSB group. The MDA level also significantly increased (p < 0.01) in the ANT group in the jejunum. Propionic acid (p < 0.05) and butyric acid (p < 0.01) content significantly increased in the NSB group in the jejunum and ileum segments. The 16S rRNA sequencing results showed no significant difference (p > 0.05) in alpha and beta diversity among the groups. LEFSe analysis also indicated that Peptostreptococcaceae, Colidextribacter, Firmicutes, Oscillospira, and Erysipelatoclostridiaceae, which promote SCFA production (p < 0.05), were identified as dominant taxon-enriched bacterial genera in the NSB group. The Spearman correlation analysis revealed that Colidextribacter with ADFI, ADG, VH, claudin-1 (p < 0.05), and unclassified_f__Peptostreptococcaceae with ADFI, IL-10, and ZO-1 were positively correlated (p < 0.05). Furthermore, ADFI and ADG with IL-10, claudin-1, SOD, T-AOC, and butyric acid (p < 0.05), and similarly, ADG with VH (p < 0.05), showed a positive correlation. In conclusion, NSB enhanced the growth performance by improving jejunum and ileum morphology, and serum anti-inflammatory cytokines, and by regulating the intestinal barrier function and antioxidant capacity, SCFAs' content, and cecum microbiota, showing its potential use as an alternative to antibiotics in poultry nutrition.

17.
J Anim Sci ; 2024 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-39158070

RESUMO

Young animals are highly susceptible to intestinal damage due to incomplete intestinal development, making them vulnerable to external stimuli. Weaning stress in piglets, for instance, disrupts the balance of intestinal microbiota and metabolism, triggering intestinal inflammation and resulting in gut damage. Caffeic acid (CA), a plant polyphenol, can potentially improve intestinal health. Here, we evaluated the effects of dietary CA on the intestinal barrier and microbiota using a lipopolysaccharide (LPS)-induced intestinal damage model. Eighteen piglets were divided into three groups: control group (CON), LPS group (LPS), and CA + LPS group (CAL). On the 21st and 28th day, six piglets in each group were administered either LPS (80 µg/kg body weight; Escherichia coli O55:B5) or saline. The results showed that dietary CA improved the intestinal morphology and barrier function, and alleviated the inflammatory response. Moreover, dietary CA also improved the diversity and composition of the intestinal microbiota by increasing Lactobacillus and Terrisporobacter while reducing Romboutsia. Furthermore, the LPS challenge resulted in a decreased abundance of 14 different bile acids and acetate, which were restored to normal levels by dietary CA. Lastly, correlation analysis further revealed the potential relationship between intestinal microbiota, metabolites, and barrier function. These findings suggest that dietary CA could enhance intestinal barrier function and positively influence intestinal microbiota and its metabolites to mitigate intestinal damage in piglets. Consuming foods rich in CA may effectively reduce the incidence of intestinal diseases and promote intestinal health in piglets.

18.
J Nutr Biochem ; 124: 109491, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-37865382

RESUMO

Weaning is one of the major factors that cause stress and intestinal infection in infants and in young animals due to an immature intestine and not fully developed immune functions. Pectin (PEC), a prebiotic polysaccharide, has attracted considerable attention in intestinal epithelial signaling and function via modulation of the microbial community. A total of 16 weaned piglets (21-d-old) were randomly assigned into two groups: control group and PEC group. Supplementation of 5% pectin improved intestinal mucosal barrier function by modulating the composition of the bile acid pool in piglets. Specifically, piglets in PEC group had less serum D-lactate content and alkaline phosphatase activity. In the ileum, dietary pectin increased the number of crypt PAS/AB-positive goblet cells and the mRNA expressions of MUC2, ZO-1, and Occludin. Piglets in PEC group displayed a decreased abundance of Enterococcus (2.71 vs. 65.92%), but the abundances of Lactobacillus (30.80 vs. 7.93%), Streptococcus (21.41 vs. 14.81%), and Clostridium_sensu_stricto_1 (28.34 vs. 0.01%) were increased. Elevated concentrations of bile acids especially hyocholic acid species (HCAs) including HCA, HDCA, and THDCA were also observed. Besides, correlation analysis revealed that dietary pectin supplementation may have beneficial effects through stimulation of the crosstalk between gut microbes and bile acid synthesis within the enterohepatic circulation. Thus, dietary pectin supplementation exhibited a further positive effect on the healthy growth and development of weaned piglets. These findings suggest pectin supplementation as the prebiotic is beneficial for gut health and improvement of weaned stress via regulating microbiota and bile acid metabolism.


Assuntos
Suplementos Nutricionais , Função da Barreira Intestinal , Humanos , Animais , Suínos , Suplementos Nutricionais/análise , Pectinas/farmacologia , Dieta , Ácidos e Sais Biliares , Desmame
19.
Poult Sci ; 103(2): 103249, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38035475

RESUMO

Two experiments were conducted to establish the prediction equations for AME and TME of corn based on chemical composition and enzymatic hydrolysate gross energy (EHGE) in roosters. In experiment 1, eighty 32-wk-old Hy-line Brown roosters with an average body weight of 2.55 ± 0.21 kg were randomly assigned to 10 diet treatments in a completely randomized design to determine AME and TME by the force-feeding method. Each treatment had 8 replicates with 1 bird per replicate. The 10 test diets used in the experiment were formulated with corn (including 96.10%) as the sole source of energy. In experiment 2, the EHGE of 14 corn samples was measured by the computer-controlled simulated digestion system (CCSDS) with 5 replicates of each sample. The average AME and TME values of corn were 14.58 and 16.46 MJ/kg DM, respectively. The EHGE of 14 corn samples ranged from 14.66 to 15.89 (the mean was 15.24) MJ/kg DM. The best-fit equations for corn based on chemical composition were AME (MJ/kg DM) = 14.5504 + 0.1166 × ether extract (EE) + 0.5058 × Ash - 0.0957 × neutral detergent fiber (NDF) (R2 = 0.8194, residual standard deviation (RSD) = 0.0860, P < 0.01) and TME (MJ/kg DM) = 16.0625 + 0.1314 × EE + 0.4725 × Ash - 0.0872 × NDF (R2 = 0.7867, RSD = 0.0860, P < 0.01). The best-fit equations for corn based on EHGE were AME (MJ/kg DM) = 7.8883 + 0.4568 × EHGE (R2 = 0.8587, RSD = 0.0693, P < 0.01) and TME (MJ/kg DM) = 10.0099 + 0.4228 × EHGE (R2 = 0.8720, RSD = 0.0608, P < 0.01). The differences between determined and predicted values from equations established based on EHGE were lower than those observed from chemical composition equations. These results indicated that EHGE measured with CCSDS could predict the AME and TME of corn for roosters with high accuracy.


Assuntos
Digestão , Zea mays , Animais , Masculino , Zea mays/química , Galinhas , Ração Animal/análise , Fenômenos Fisiológicos da Nutrição Animal , Metabolismo Energético , Dieta/veterinária
20.
J Nutr Biochem ; 133: 109719, 2024 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-39103108

RESUMO

This study investigated the protective effect of dulcitol on LPS-induced intestinal injury in piglets and explored the underlying molecular mechanisms. A total of 108 piglets were divided into three groups: CON, LPS, and DUL. The CON and LPS groups were fed a basal diet, the DUL group was fed a diet supplementation with 500 mg/kg dulcitol. On day 29, 6 piglets in the LPS and DUL groups were injected with 100 µg/kg BW of LPS. At 4 h postchallenge, all pigs were slaughtered, and colonic samples were collected. Results showed that dulcitol supplementation boosted intestinal barrier function in LPS-challenged piglets by enhancing intestinal morphology and integrity, and increasing the gene expression of zonula occludens-1, claudin-1, and occludin in the colonic mucosa (P <0.05). Metabolomics showed DUL supplementation mainly increased (P <0.05) the metabolites related to steroid and vitamin metabolism (Cholesterol and Vitamin C). Proteomics showed that dulcitol supplementation altered the protein expression involved in maintaining barrier integrity (FN1, CADM1, and PARD3), inhibiting inflammatory response (SLP1, SFN, and IRF3), and apoptosis (including FAS, ING1, BTK, MTHFR, NOX, and P53BP2) in LPS-challenged piglets (P <0.05). Additionally, dulcitol addition also suppressed the TLR4/NF-κB signaling pathway and apoptosis in mRNA and protein levels. Dulcitol increased the abundance of short-chain fatty acid-producing bacteria (Lactobacillus, Blautia, and Faecalibacterium) at the genus level, but decreased the relative abundance of Proteobacteria at the phylum level and Pseudomonas and Delftia at the genus level in piglets (P<.05). In conclusion, these results suggested that the addition of dulcitol alleviated LPS-induced intestinal barrier injury in piglets, probably by maintaining its integrity, inhibiting the TLR4/NF-κB signaling pathways and apoptosis, and modulating the gut microbiota. Therefore, dulcitol can be considered a potential dietary additive for improving intestinal health in pig models.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA