Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Foodborne Pathog Dis ; 2024 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-39049788

RESUMO

Clostridioides difficile and its endospores possess the characteristics of a foodborne pathogen and have been detected at several stages in the food chain. In the presence of an imbalance in host intestinal ecology, C. difficile can proliferate and cause intestinal infections. Multiple food source factors can substantially alter the host's gut ecosystem, including the consumption of baijiu. However, it remains to be known whether the gut ecological changes induced by the consumption of baijiu increase the risk of C. difficile invasion and infection. In this study, C. difficile cells were exposed to two commercially available baijiu to evaluate the effect of baijiu on C. difficile cells and to verify through a mouse model. The results showed that baijiu effectively inhibited the growth and biofilm production of C. difficile, downregulated the expression levels of tcdA and tcdB virulence genes but upregulated the expression level of spore-producing genes Spo0A, enhanced the spore production, as well as increased C. difficile cell adhesion to Caco-2 cells. The mouse model showed that the intake of baijiu promoted the invasion and infection of C. difficile spores, causing damage to the cecum tissue, accompanied by an increase in the gut lipid carrier protein-2 (Lcn-2) and TcdA toxin protein levels. Simultaneously, cholic acid was elevated, whereas deoxycholic acid was decreased. This study is the first to find a possible link between baijiu intake and C. difficile spore invasion and infection.

2.
Crit Rev Microbiol ; : 1-15, 2023 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-36939635

RESUMO

Clostridioides difficile infection (CDI) is a serious disease with a high recurrence rate. The single and mixed biofilms formed by C. difficile in the gut contribute to the formation of recurrent CDI (rCDI). In parallel, other gut microbes influence the formation and development of C. difficile biofilms, also known as symbiotic biofilms. Interactions between members within the symbiotic biofilm are associated with the worsening or alleviation of CDI. These interactions include effects on C. difficile adhesion and chemotaxis, modulation of LuxS/AI-2 quorum sensing (QS) system activity, promotion of cross-feeding by microbial metabolites, and regulation of intestinal bile acid and pyruvate levels. In the process of C. difficile biofilms control, inhibition of C. difficile initial biofilm formation and killing of C. difficile vegetative cells and spores are the main targets of action. The role of symbiotic biofilms in CDI suggested that targeting interventions of C. difficile-promoting gut microbes could indirectly inhibit the formation of C. difficile mixed biofilms and improved the ultimate therapeutic effect. In summary, this review outlines the mechanisms of C. difficile biofilm formation and summarises the treatment strategies for such single and mixed biofilms, aiming to provide new ideas for the prevention and treatment of CDI.

3.
J Microbiol Biotechnol ; 34(4): 828-837, 2024 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-38668685

RESUMO

Vancomycin (VAN) and metronidazole (MTR) remain the current drugs of choice for the treatment of non-severe Clostridioides difficile infection (CDI); however, while their co-administration has appeared in clinical treatment, the efficacy varies greatly and the mechanism is unknown. In this study, a CDI mouse model was constructed to evaluate the therapeutic effects of VAN and MTR alone or in combination. For a perspective on the intestinal ecology, 16S rRNA amplicon sequencing and non-targeted metabolomics techniques were used to investigate changes in the fecal microbiota and metabolome of mice under the co-administration treatment. As a result, the survival rate of mice under co-administration was not dramatically different compared to that of single antibiotics, and the former caused intestinal tissue hyperplasia and edema. Co-administration also significantly enhanced the activity of amino acid metabolic pathways represented by phenylalanine, arginine, proline, and histidine, decreased the level of deoxycholic acid (DCA), and downregulated the abundance of beneficial microbes, such as Bifidobacterium and Akkermansia. VAN plays a dominant role in microbiota regulation in co-administration. In addition, co-administration reduced or increased the relative abundance of antibiotic-sensitive bacteria, including beneficial and harmful microbes, without a difference. Taken together, there are some risks associated with the co-administration of VAN and MTR, and this combination mode should be used with caution in CDI treatment.


Assuntos
Antibacterianos , Clostridioides difficile , Infecções por Clostridium , Modelos Animais de Doenças , Quimioterapia Combinada , Fezes , Microbioma Gastrointestinal , Metronidazol , RNA Ribossômico 16S , Vancomicina , Animais , Metronidazol/administração & dosagem , Vancomicina/administração & dosagem , Vancomicina/farmacologia , Infecções por Clostridium/tratamento farmacológico , Infecções por Clostridium/microbiologia , Microbioma Gastrointestinal/efeitos dos fármacos , Camundongos , Antibacterianos/administração & dosagem , Antibacterianos/farmacologia , Clostridioides difficile/efeitos dos fármacos , Clostridioides difficile/genética , RNA Ribossômico 16S/genética , Fezes/microbiologia , Intestinos/microbiologia , Intestinos/efeitos dos fármacos , Masculino , Bactérias/classificação , Bactérias/genética , Bactérias/efeitos dos fármacos , Metaboloma/efeitos dos fármacos
4.
Artigo em Inglês | MEDLINE | ID: mdl-38502383

RESUMO

There is a lack of clinical data to support the effectiveness and safety of postbiotics in the modulation of human oral microbiota and oral health care. Here, volunteers were recruited and randomly assigned to two cohorts: a placebo group (n = 15) and a postbiotic group (n = 16). The placebo group used toothpaste that did not contain postbiotics, while the postbiotic group used toothpaste with postbiotics (3 × 1010 CFU inactivated Lactobacillus salivarius LS97, L. paracasei LC86, and L. acidophilus LA85). Saliva samples were collected at different time points and the immunoglobulin A (IgA) and short-chain fatty acid (SCFA) levels were determined, while the salivary microbiota was analyzed by 16S rRNA amplicon sequencing. The results showed that salivary IgA levels and acetic and propionic acid levels were notably higher in the postbiotic group (P < 0.05), accompanied by an increase in the level of alpha diversity of the salivary microbiota, and these indexes remained high 1 month after discontinuing the use of toothpaste with or without postbiotics. A notable decrease in the relative abundance of the unclassified_Enterobacteriaceae, Klebsiella, Escherichia, etc. in the postbiotic group was accompanied by a notable increase in Ruminofilibacter and Lactobacillus. However, both groups did not cause significant changes in the overall structure of the host salivary microbiota. In conclusion, postbiotics dramatically and consistently improved oral immunity levels and SCFA content in the host. In addition, postbiotics were able to increase the level of microbial alpha diversity and down-regulate the abundance of some harmful microbes without significantly altering the structure of the host salivary microbiota. Chinese Clinical Trial Registry (ChiCTR) ( www.chictr.org.cn ) under the registration number ChiCTR2300074088.

5.
Gut Microbes ; 16(1): 2390133, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39132815

RESUMO

Vancomycin (VAN) treatment in Clostridioides difficile infection (CDI) suffers from a relatively high rate of recurrence, with a variety of reasons behind this, including biofilm-induced recurrent infections. C. difficile can form monophyletic or symbiotic biofilms with other microbes in the gut, and these biofilms protect C. difficile from being killed by antibiotics. In this study, we analyzed the ecological relationship between Bacteroides thetaiotaomicron and C. difficile and their formation of symbiotic biofilm in the VAN environment. The production of symbiotic biofilm formed by C. difficile and B. thetaiotaomicron was higher than that of C. difficile and B. thetaiotaomicron alone in the VAN environment. In symbiotic biofilms, C. difficile was characterized by increased production of the toxin protein TcdA and TcdB, up-regulation of the expression levels of the virulence genes tcdA and tcdB, enhanced bacterial cell swimming motility and c-di-GMP content, and increased adhesion to Caco-2 cells. The scanning electron microscope (SEM) combined with confocal laser scanning microscopy (CLSM) results indicated that the symbiotic biofilm was elevated in thickness, dense, and had an increased amount of mixed bacteria, while the fluorescence in situ hybridization (FISH) probe and plate colony counting results further indicated that the symbiotic biofilm had a significant increase in the amount of C. difficile cells, and was able to better tolerate the killing of the simulated intestinal fluid. Taken together, C. difficile and B. thetaiotaomicron become collaborative in the VAN environment, and targeted deletion or attenuation of host gut B. thetaiotaomicron content may improve the actual efficacy of VAN in CDI treatment.


Assuntos
Antibacterianos , Proteínas de Bactérias , Bacteroides thetaiotaomicron , Biofilmes , Clostridioides difficile , Simbiose , Vancomicina , Biofilmes/efeitos dos fármacos , Biofilmes/crescimento & desenvolvimento , Clostridioides difficile/efeitos dos fármacos , Clostridioides difficile/fisiologia , Clostridioides difficile/genética , Humanos , Vancomicina/farmacologia , Antibacterianos/farmacologia , Células CACO-2 , Bacteroides thetaiotaomicron/efeitos dos fármacos , Bacteroides thetaiotaomicron/metabolismo , Bacteroides thetaiotaomicron/fisiologia , Bacteroides thetaiotaomicron/genética , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Toxinas Bacterianas/metabolismo , Toxinas Bacterianas/genética , Enterotoxinas/metabolismo , Enterotoxinas/genética , Aderência Bacteriana/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA