Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 41
Filtrar
1.
World J Surg Oncol ; 22(1): 243, 2024 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-39256855

RESUMO

OBJECTIVE: To investigate the relationship between the expression of androgen receptor (AR) and clinical characteristics in breast cancer. PATIENTS AND METHODS: The clinical records of all 432 patients tested for AR in our institution between January 2020 and May 2023 were reviewed. Clinical characteristics, age, menopausal status, tumor node metastasis (TNM) stage, distant metastasis, pathological complete response (pCR), histopathological features histological grade, estrogen receptor (ER), progesterone receptor, Her-2, Ki-67, and molecular subtype were registered for all patients. RESULTS: About 377 (87.27%) of the 432 patients had AR expression. No significant difference in AR expression was found with age, menopausal status, TNM stage of primary tumor, or pCR. AR was positively and significantly associated with the histological grade, and recurrence. The AR expression was significantly related with molecular subtypes, including ER, PR Her-2, Ki67 and molecular subtype. ER (OR = 10.489, 95%CI: 5.470-21.569), PR (OR = 7.690, 95%CI: 3.974-16.129, Her-2 (OR = 10.489, 95%CI: 2.779-23.490 and tumor recurrence (OR = 0.110, 95%CI: 0.031-0.377 were significant independent risk factors affecting AR expression. CONCLUSIONS: AR expression can serve as a reliable basis for judging the clinical molecular types and poor prognosis for breast cancer. AR may be a novel biomarker and target in AR-positive breast cancer depending on significant difference in AR expression among different molecular types of breast cancer.


Assuntos
Biomarcadores Tumorais , Neoplasias da Mama , Recidiva Local de Neoplasia , Receptor ErbB-2 , Receptores Androgênicos , Receptores de Estrogênio , Receptores de Progesterona , Humanos , Receptores Androgênicos/metabolismo , Feminino , Neoplasias da Mama/patologia , Neoplasias da Mama/metabolismo , Pessoa de Meia-Idade , Biomarcadores Tumorais/metabolismo , Prognóstico , Adulto , Receptores de Progesterona/metabolismo , Receptor ErbB-2/metabolismo , Recidiva Local de Neoplasia/metabolismo , Recidiva Local de Neoplasia/patologia , Receptores de Estrogênio/metabolismo , Seguimentos , Idoso , Estudos Retrospectivos , Metástase Linfática , Estadiamento de Neoplasias , Gradação de Tumores , Idoso de 80 Anos ou mais
2.
Clin Genet ; 99(1): 84-92, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-32583420

RESUMO

Long non-coding RNAs (lncRNAs), a class of long RNAs, are longer than 200 nucleotides in length but lack protein-coding capacity. LncRNAs, as critical genomic regulators, are involved in genomic imprinting regulation, histone modification and gene expression regulation as well as tumor initiation and progression. However, it is also found that lncRNAs are associated with drug resistance in several types of cancer. Drug resistance is an important reason for clinical chemotherapy failure, and the molecular mechanism of tumor resistance is complex, which is a process of multi-cause, multi-gene and multi-signal transduction pathway interaction. Then comprehending the mechanisms of chemoresistance will help find ways to control the tumor progression effectively. Therefore, in this review, we will construct lncRNAs /drug resistance interaction network and shed light on the role of lncRNAs in drug resistance.


Assuntos
Resistencia a Medicamentos Antineoplásicos/genética , Neoplasias/tratamento farmacológico , RNA Longo não Codificante/genética , Regulação Neoplásica da Expressão Gênica/genética , Humanos , MicroRNAs/genética , Neoplasias/genética , Neoplasias/patologia , Transdução de Sinais/genética
3.
Tumour Biol ; 39(3): 1010428317692204, 2017 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-28347244

RESUMO

The microRNA family, miR-30, plays diverse roles in regulating key aspects of neoplastic transformation, metastasis, and clinical outcomes in different types of tumors. Accumulating evidence proves that miR-30 family is pivotal in the breast cancer development by controlling critical signaling pathways and relevant oncogenes. Here, we review the roles of miR-30 family members in the tumorigenesis, metastasis, and drug resistance of breast cancer, and their application to predict the prognosis of breast cancer patients. We think miR-30 family members would be promising biomarkers for breast cancer and may bring a novel insight in molecular targeted therapy of breast cancer.


Assuntos
Neoplasias da Mama/genética , MicroRNAs/genética , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/metabolismo , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Carcinogênese/genética , Carcinogênese/metabolismo , Resistencia a Medicamentos Antineoplásicos , Feminino , Humanos , MicroRNAs/metabolismo , Metástase Neoplásica , Transdução de Sinais/genética
4.
Tumour Biol ; 37(11): 15315-15324, 2016 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-27699665

RESUMO

The high resistant rate of Adriamycin (Adr) is associated with a poor prognosis of breast cancer in women worldwide. Since miR-222 might contribute to chemoresistance in many cancer types, in this study, we aimed to investigate its efficacy in breast cancer through PTEN/Akt/p27 kip1 pathway. Firstly, in vivo, we verified that miR-222 was upregulated in chemoresistant tissues after surgery compared with the paired preneoadjuvant samples of 21 breast cancer patients. Then, human breast cancer Adr-resistant cell line (MCF-7/Adr) was constructed to validate the pathway from the parental sensitive cell line (MCF-7/S). MCF-7/Adr and MCF-7/S were transfected with miR-222 mimics, miR-222 inhibitors, or their negative controls, respectively. The results showed that inhibition of miR-222 in MCF-7/Adr significantly increased the expressions of PTEN and p27 kip1 and decreased phospho-Akt (p-Akt) both in mRNA and protein levels (p < 0.05) by using quantitative real-time PCR (qRT-PCR) and western blot. MTT and flow cytometry suggested that lower expressed miR-222 enhanced apoptosis and decreased the IC50 of MCF-7/Adr cells. Additionally, immunofluorescence demonstrated that the subcellular location of p27 kip1 was dislocated resulting from the alteration of miR-222. Conversely, in MCF-7/S transfected with miR-222 mimics, upregulation of miR-222 is associated with decreasing PTEN and p27 kip1 and increasing Akt accompanied by less apoptosis and higher IC50. Importantly, Adr resistance induced by miR-222 overexpression through PTEN/Akt/p27 was completely blocked by LY294002, an Akt inhibitor. Taken together, these data firstly elucidated that miR-222 could reduce the sensitivity of breast cancer cells to Adr through PTEN/Akt/p27 kip1 signaling pathway, which provided a potential target to increase the sensitivity to Adr in breast cancer treatment and further improved the prognosis of breast cancer patients.


Assuntos
Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/genética , Inibidor de Quinase Dependente de Ciclina p27/metabolismo , Doxorrubicina/farmacologia , Resistencia a Medicamentos Antineoplásicos/genética , MicroRNAs/genética , PTEN Fosfo-Hidrolase/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Antibióticos Antineoplásicos/farmacologia , Apoptose , Western Blotting , Neoplasias da Mama/patologia , Proliferação de Células , Inibidor de Quinase Dependente de Ciclina p27/genética , Feminino , Citometria de Fluxo , Imunofluorescência , Regulação Neoplásica da Expressão Gênica , Humanos , Células MCF-7 , PTEN Fosfo-Hidrolase/genética , Prognóstico , Proteínas Proto-Oncogênicas c-akt/genética , RNA Mensageiro/genética , Reação em Cadeia da Polimerase em Tempo Real , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Transdução de Sinais
5.
Tumour Biol ; 37(4): 5247-56, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26555545

RESUMO

While adriamycin (adr) offers improvement in survival for breast cancer (BCa) patients, unfortunately, drug resistance is almost inevitable. Mounting evidence suggests that exosomes act as a vehicle for genetic cargo and constantly shuttle biologically active molecules including microRNAs (miRNAs) between heterogeneous populations of tumor cells, engendering a resistance-promoting niche for cancer progression. Our recent study showed that exosomes from docetaxel-resistance BCa cells could modulate chemosensitivity by delivering miRNAs. Herein, we expand on our previous finding and explore the relevance of exosome-mediated miRNA delivery in resistance transmission of adr-resistant BCa sublines. We now demonstrated the selective packing of miRNAs within the exosomes (A/exo) derived from adr-resistant BCa cells. The highly expressed miRNAs in A/exo were significantly increased in recipient fluorescent sensitive cells (GFP-S) after A/exo incorporation. Gene ontology analysis of predicted targets showed that the top 30 most abundant miRNAs in A/exo were involved in crucial biological processes. Moreover, A/exo not only loaded miRNAs for its production and release but also carried miRNAs associated with Wnt signaling pathway. Furthermore, A/exo co-culture assays indicated that miRNA-containing A/exo was able to increase the overall resistance of GFP-S to adr exposure and regulate gene levels in GFP-S. Our results reinforce our earlier reports that adr-resistant BCa cells could manipulate a more deleterious microenvironment and transmit resistance capacity through altering gene expressions in sensitive cells by transferring specific miRNAs contained within exosomes.


Assuntos
Neoplasias da Mama/tratamento farmacológico , Resistencia a Medicamentos Antineoplásicos/genética , Exossomos/genética , MicroRNAs/genética , Apoptose/efeitos dos fármacos , Neoplasias da Mama/genética , Neoplasias da Mama/patologia , Técnicas de Cocultura , Docetaxel , Doxorrubicina/administração & dosagem , Exossomos/efeitos dos fármacos , Feminino , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Células MCF-7 , MicroRNAs/biossíntese , Taxoides/administração & dosagem , Microambiente Tumoral/genética , Via de Sinalização Wnt/efeitos dos fármacos
6.
Tumour Biol ; 37(3): 3227-35, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26432333

RESUMO

Breast cancer (BCa) is one of the major deadly cancers in women. However, treatment of BCa is still hindered by the acquired-drug resistance. It is increasingly reported that exosomes take part in the development, metastasis, and drug resistance of BCa. However, the specific role of exosomes in drug resistance of BCa is poorly understood. In this study, we investigate whether exosomes transmit drug resistance through delivering miR-222. We established an adriamycin-resistant variant of Michigan Cancer Foundation-7 (MCF-7) breast cancer cell line (MCF-7/Adr) from a drug-sensitive variant (MCF-7/S). Exosomes were isolated from cell supernatant by ultracentrifugation. Cell viability was assessed by MTT assay and apoptosis assay. Individual miR-222 molecules in BCa cells were detected by fluorescence in situ hybridization (FISH). Then, FISH was combined with locked nucleic acid probes and enzyme-labeled fluorescence (LNA-ELF-FISH). Individual miR-222 could be detected as bright photostable fluorescent spots and then the quantity of miR-222 per cell could be counted. Stained exosomes were taken in by the receipt cells. MCF-7/S acquired drug resistance after co-culture with exosomes from MCF-7/Adr (A/exo) but did not after co-culture with exosomes from MCF-7/S (S/exo). The quantity of miR-222 in A/exo-treated MCF-7/S was significantly greater than in S/exo-treated MCF-7/S. MCF-7/S transfected with miR-222 mimics acquired adriamycin resistance while MCF-7/S transfected with miR-222 inhibitors lost resistance. In conclusion, exosomes are effective in transmitting drug resistance and the delivery of miR-222 via exosomes may be a mechanism.


Assuntos
Doxorrubicina/farmacologia , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Exossomos/genética , MicroRNAs/genética , Antibióticos Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Apoptose/genética , Neoplasias da Mama/genética , Neoplasias da Mama/patologia , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/genética , Resistencia a Medicamentos Antineoplásicos/genética , Exossomos/ultraestrutura , Feminino , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Hibridização in Situ Fluorescente , Células MCF-7 , Microscopia Eletrônica de Transmissão , Microscopia de Fluorescência
7.
Cancer Sci ; 106(8): 959-64, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-26052865

RESUMO

Transport through the cell membrane can be divided into active, passive and vesicular types (exosomes). Exosomes are nano-sized vesicles released by a variety of cells. Emerging evidence shows that exosomes play a critical role in cancers. Exosomes mediate communication between stroma and cancer cells through the transfer of nucleic acid and proteins. It is demonstrated that the contents and the quantity of exosomes will change after occurrence of cancers. Over the last decade, growing attention has been paid to the role of exosomes in the development of breast cancer, the most life-threatening cancer in women. Breast cancer could induce salivary glands to secret specific exosomes, which could be used as biomarkers in the diagnosis of early breast cancer. Exosome-delivered nucleic acid and proteins partly facilitate the tumorigenesis, metastasis and resistance of breast cancer. Exosomes could also transmit anti-cancer drugs outside breast cancer cells, therefore leading to drug resistance. However, exosomes are effective tools for transportation of anti-cancer drugs with lower immunogenicity and toxicity. This is a promising way to establish a drug delivery system.


Assuntos
Neoplasias da Mama/patologia , Resistencia a Medicamentos Antineoplásicos/fisiologia , Exossomos/metabolismo , Invasividade Neoplásica/patologia , Animais , Antineoplásicos/administração & dosagem , Neoplasias da Mama/tratamento farmacológico , Sistemas de Liberação de Medicamentos , Feminino , Humanos , Metástase Neoplásica
8.
Cell Physiol Biochem ; 36(6): 2274-86, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26279432

RESUMO

BACKGROUND: Currently, exosomes that act as mediators of intercellular communication are being researched extensively. Our previous studies confirmed that these exosomes contain microRNAs (miRNAs) that could alter chemo-susceptibility, which is partly attributed to the successful intercellular transfer of multidrug resistance (MDR)-specific miRNAs. We also confirmed that ß-elemene could influence MDR-related miRNA expression and regulate the expression of the target genes PTEN and Pgp, which may lead to the reversal of the chemoresistant breast cancer (BCA) cells. We are the first to report these findings, and we propose the following logical hypothesis: ß-elemene can mediate MDR-related miRNA expression in cells, thereby affecting the exosome contents, reducing chemoresistance transmission via exosomes, and reversing the drug resistance of breast cancer cells. METHODS: MTT-cytotoxic, miRNA microarray, real-time quantitative PCR, Dual Luciferase Activity Assay, and Western blot analysis were performed to investigate the impact of ß-elemene on the expression of chemoresistance specific miRNA and PTEN as well as Pgp in chemoresistant BCA exosomes. RESULTS: Drug resistance can be reversed by ß-elemene related to exosomes. There were 104 differentially expressed miRNAs in the exosomes of two chemoresistant BCA cells: adriacin (Adr) - resistant MCF-7 cells (MCF-7/Adr) and docetaxel (Doc) - resistant MCF-7 cells (MCF-7/Doc) that underwent treatment. Of these, 31 miRNAs were correlated with the constant changes in the MDR. The expression of miR-34a and miR-452 can lead to changes in the characteristics of two chemoresistant BCA exosomes: MCF-7/Adr exosomes (A/exo) and MCF-7/Doc exosomes (D/exo). The PTEN expression affected by ß-elemene was significantly increased, and the Pgp expression affected by ß-elemene was significantly decreased in both cells and exosomes. ß-elemene induced a significant increase in the apoptosis rate in both MCF-7/Doc and MCF-7/Adr cells. CONCLUSIONS: Drug resistance can be reversed by ß-elemene, which can alter the expression of some MDR-related miRNAs, including PTEN and Pgp in MCF-7/Adr and MCF-7/Doc in cells. It can therefore affect the exosome contents and induce the reduction of resistance transmission via exosomes.


Assuntos
Neoplasias da Mama/patologia , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Exossomos/metabolismo , Sesquiterpenos/farmacologia , Membro 1 da Subfamília B de Cassetes de Ligação de ATP/genética , Membro 1 da Subfamília B de Cassetes de Ligação de ATP/metabolismo , Apoptose/efeitos dos fármacos , Apoptose/genética , Neoplasias da Mama/genética , Técnicas de Cocultura , Docetaxel , Doxorrubicina/farmacologia , Resistencia a Medicamentos Antineoplásicos/genética , Exossomos/efeitos dos fármacos , Feminino , Perfilação da Expressão Gênica , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Proteínas de Fluorescência Verde/metabolismo , Humanos , Luciferases/metabolismo , Células MCF-7 , Análise de Sequência com Séries de Oligonucleotídeos , PTEN Fosfo-Hidrolase/genética , PTEN Fosfo-Hidrolase/metabolismo , Taxoides/farmacologia
9.
Tumour Biol ; 36(3): 1395-401, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25744731

RESUMO

MicroRNAs (miRNAs) are small noncoding RNAs that regulate gene expressions at posttranscriptional level. Growing evidence points to their significant role in the acquisition of drug resistance in cancers. Studies show that miRNAs are often aberrantly expressed in human cancer cells which are associated with tumorigenesis, metastasis, invasiveness, and drug resistance. Breast cancer is the leading cause of cancer-induced death in women. Over the last decades, increasing attention has been paid to the effects of miRNAs on the development of breast cancer drug resistance. Among them, miR-155 takes part in a sequence of bioprocesses that contribute to the development of such drug resistance, including repression of FOXO3a, enhancement of epithelial-to-mesenchymal transition (EMT) and mitogen-activated protein kinase (MAPK) signaling, reduction of RhoA, and affecting the length of telomeres. In this review, we discuss the role of miR-155 in the acquisition of breast cancer drug resistance. This will provide a new way in antiresistance treatment of drug-resistant breast cancer.


Assuntos
Neoplasias da Mama/genética , Resistencia a Medicamentos Antineoplásicos/genética , MicroRNAs/genética , Animais , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Neoplasias da Mama/tratamento farmacológico , Transição Epitelial-Mesenquimal/efeitos dos fármacos , Transição Epitelial-Mesenquimal/genética , Feminino , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos
10.
Tumour Biol ; 36(11): 8259-66, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26383520

RESUMO

Propofol-paravertebral anesthesia (PPA) is a unique combination of paravertebral nerve blocks (PVBs) and propofol that regulates the cellular microenvironment during surgical period. Growing evidence points to its ability to attenuate perioperative immunosuppression of cancers. Abundant studies show that cancer patients who undergo perioperative PPA exhibit less recurrence as well as metastasis. Breast cancer remains a leading cause of cancer-induced death in women. Over the last decades, increasing concerns have been put on the promotional role of PPA in the prognosis of breast cancer patients. Among them, PPA participates in several bioprocesses in the development of breast cancer, including inhibiting hypoxia-inducible factor (HIF) activity, elevating serum concentration of nitric oxide index (NOx), depression of the neuroepithelial cell transforming gene 1 (NET1) signal pathway, blocking the nuclear factor kappa B (NF-κB) pathway following an decreased expression of matrix metalloproteinase (MMP), increasing NK cytotoxicity, and affecting transforming growth factor (TGF)-ß-targeted ras and HER2/neu gene pathways. In this review, we discuss the effect of PPA on breast cancer metastasis and progression. This will provide an alteration pattern of surgical anesthesia technique in breast cancer patients with poor prognosis.


Assuntos
Anestesia , Neoplasias da Mama/tratamento farmacológico , Recidiva Local de Neoplasia/tratamento farmacológico , Propofol/uso terapêutico , Neoplasias da Mama/patologia , Neoplasias da Mama/cirurgia , Feminino , Humanos , Metástase Neoplásica , Recidiva Local de Neoplasia/patologia , Bloqueio Nervoso , Período Perioperatório , Prognóstico
11.
Cell Physiol Biochem ; 34(6): 2027-37, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25562151

RESUMO

BACKGROUND: Multidrug resistance (MDR) directly contributes to the clinical failure of chemotherapy in breast cancer (BCA). ß-elemene is a natural antitumor drug from plants. We previously confirmed that MDR could be reversed by ß-elemene. In this study, we intended to investigate the reversal effect of ß-elemene on MDR in human BCA adriacin (Adr) -resistant MCF-7 cells (MCF-7/Adr) and docetaxel (Doc) - resistant MCF-7 cells (MCF-7/Doc) through the gene regulatory network. METHODS: MTT-cytotoxic, miRNA microarray, Real-time quantitative PCR, Dual Luciferase Activity Assay, Western blot analysis were performed to investigate the impact of ß-elemene on chemo-resistant BCA cell suvival, and its impact on the expression of chemo-resistance specific miRNA and the downstream target genes PTEN and Pgp. RESULTS: Compared with the miRNAs expression profiles of MCF-7/Adr and MCF-7/Doc cell lines from our previous studies, there were 322 differentially expressed miRNAs in MCF-7/Adr and MCF-7/Doc breast cancer cells with ß-elemene intervention (50µM/L) for 30h, and 6 miRNAs were significantly up-regulated and 12 miRNAs were significantly down-regulated in both MCF-7/Adr and MCF-7/Doc. We have testified that 5 miRNA is related to MDR before, in this study, the expression of miR-34a, miR-222, miR-452 and miR-29a can lead to changes of the characteristics of chemo-resistant MCF-7/Adr and MCF-7/Doc. The PTEN expression under intervention of ß-elemene was significantly increased and Pgp expression under ß-elemene intervention was significantly decreased in both cell lines. CONCLUSIONS: ß-elemene could influence MDR related miRNA expression and subsequently regulate the expression of the target genes PTEN and Pgp, which may lead to reduction of the viability of the chemo-resistant breast cancer cells.


Assuntos
Neoplasias da Mama/tratamento farmacológico , MicroRNAs/biossíntese , Sesquiterpenos/administração & dosagem , Neoplasias da Mama/genética , Neoplasias da Mama/patologia , Docetaxel , Doxorrubicina/administração & dosagem , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Feminino , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Células MCF-7 , Taxoides/administração & dosagem
12.
Tumour Biol ; 35(4): 2883-92, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24272085

RESUMO

Resistance to chemotherapy and endocrine therapy as well as targeted drugs is a major problem in treatment of breast cancer. Over the last decades, emerging studies have revealed that extracellular vesicles, which are chronically released by breast cancer cells and surrounding stromal cells, influence the action of most commonly used therapeutics. Such modulatory effects have been related to the transport of biologically active molecules including proteins and functional microRNAs. In this review, we highlight recent studies regarding extracellular vesicle-mediated microRNA delivery in formatting drug resistance. We also suggest the use of extracellular vesicles as a promising method in antiresistance treatment.


Assuntos
Neoplasias da Mama/tratamento farmacológico , Vesículas Citoplasmáticas/fisiologia , MicroRNAs/fisiologia , Resistencia a Medicamentos Antineoplásicos , Feminino , Humanos , Evasão Tumoral
13.
Tumour Biol ; 35(10): 9649-59, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-24969560

RESUMO

Breast cancer (BCa) remains chemo-unresponsive by inevitable progression of resistance to first-line treatment with docetaxel (doc). Emerging studies indicate that exosomes act as mediators of intercellular communication between heterogeneous populations of tumor cells, engendering a transmitted drug resistance for cancer development. Such modulatory effects have been related to the constant shuttle of biologically active molecules including microRNAs (miRNAs). Here, we aimed to investigate the relevance of exosome-mediated miRNA delivery in resistance transmission of BCa subpopulations. Using microarray and polymerase chain reaction, we found that exosomes from doc-resistant BCa cells (D/exo) loaded cellular miRNAs. Following D/exo transfer to the fluorescent sensitive cells (GFP-S), some miRNAs were significantly increased in recipient GFP-S. Target gene prediction and pathway analysis revealed the involvement of the top 20 most abundant miRNAs of D/exo in pathways implicated in therapy failure. Coculture assays showed that miRNA-containing D/exo increased the overall resistance of GFP-S to doc exposure. Moreover, D/exo was able to alter gene expression in GFP-S. Our results open up an intriguing possibility that drug-resistant BCa cells may spread chemoresistance to sensitive ones by releasing exosomes and that the effects could be partly attributed to the intercellular transfer of specific miRNAs.


Assuntos
Neoplasias da Mama/genética , Neoplasias da Mama/metabolismo , Resistencia a Medicamentos Antineoplásicos/genética , Exossomos/metabolismo , MicroRNAs/genética , Comunicação Celular , Linhagem Celular Tumoral , Humanos , Análise de Sequência com Séries de Oligonucleotídeos , Reação em Cadeia da Polimerase em Tempo Real
14.
Tumour Biol ; 35(7): 6327-34, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24648265

RESUMO

MicroRNA-452 (miRNA-452) was overexpressed in docetaxel-resistant human breast cancer MCF-7 cells (MCF-7/DOC). However, its role in modulating the sensitivity of breast cancer cells to docetaxel (DOC) remains unclear. The aim of this study is to investigate the role of miRNA-452 in the sensitivity of breast cancer cells to DOC.Real-time quantitative PCR (RT-qPCR) were used to identify the differential expression of miRNA-452 between MCF-7/DOC and MCF-7 cells. MiRNA-452 mimic was transfected into MCF-7 cells and miRNA-452 inhibitor was transfected into MCF-7/DOC cells. The role of miRNA-452 in these transfected cells was evaluated using RT-qPCR, MTT assay, and flow cytometry assay. The relationship of miRNA-452 and its predictive target gene "anaphase-promoting complex 4" (APC4) was analyzed by RT-qPCR and Western blot.MiRNA-452 showed significantly higher expression (78.9-folds) in MCF-7/DOC cells compared to parental MCF-7 cells. The expression of miRNA-452 in the mimic transfected MCF-7 cells was upregulated 212.2-folds (P < 0.05) compared to its negative control (NC), and the half maximal inhibitory concentration (IC50) value of DOC (1.98 ± 0.15 µM) was significantly higher than that in its NC (0.85 ± 0.08 µM, P < 0.05) or blank control (1.01 ± 0.19 µM, P < 0.05). Furthermore, its apoptotic rate (6.3 ± 1.3 %) was distinctly decreased compared with that in its NC (23.8 ± 6.6 %, P < 0.05) or blank control (18.6 ± 4.7 %, P < 0.05). In contrast, the expression of miRNA-452 in the inhibitor-transfected MCF-7/DOC cells was downregulated 0.58-fold (P < 0.05) compared to its NC, the IC50 value of DOC (44.5 ± 3.2 µM) was significantly lower than that in its NC (107.3 ± 6.63 µM, P < 0.05) or blank control (102.22 ± 11.34 µM, P < 0.05), and the apoptotic rate (45.5 ± 10.8 %) was distinctly increased compared with its NC (9.9 ± 2.2 %, P < 0.05) and blank control (9.4 ± 2.5 %, P < 0.05). Further, there was an inverse association between miRNA-452 and APC4 expression in breast cancer cells in vitro.Dysregulation of miRNA-452 involved in the DOC resistance formation of breast cancer cells may be, in part, via targeting APC4.


Assuntos
Neoplasias da Mama/genética , MicroRNAs/genética , Subunidade Apc4 do Ciclossomo-Complexo Promotor de Anáfase/genética , Apoptose/efeitos dos fármacos , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/patologia , Proliferação de Células/efeitos dos fármacos , Docetaxel , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Feminino , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Células MCF-7 , MicroRNAs/biossíntese , Taxoides/administração & dosagem
15.
Tumour Biol ; 35(11): 10773-9, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25077924

RESUMO

Acquired drug resistance is a major obstacle to chemotherapy of cancers. In this study, we aim to investigate the role of exosomes in drug-resistance transfer between breast cancer cells and detect the probable mechanism. A docetaxel-resistant variant of MCF-7 cell line (MCF-7/DOC) was established and then compared with the drug-sensitive variant (MCF-7/S). Exosomes were expelled from the cell supernatant using ultracentrifugation. Drug resistance was assessed by apoptosis assay and MTT examination. Expressions of P-glycoprotein (P-gp) were analyzed by flow cytometry. Stained exosomes were absorbed by receipt cells. MCF-7/S in the presence of exosomes extracted from the supernatant of MCF-7/DOC (DOC/exo) acquired drug resistance, while MCF-7/S exposed to their own exosomes (S/exo) did not. P-gp expression patterns of exosomes were similar as the originated cells. P-gp expression of MCF-7/S increased after incubation with DOC/exo and was affected by the amount of exosomes. Exosomes are effective in transferring drug resistance as well as P-gp from drug-resistant breast cancer cells to sensitive ones. The delivery of P-gp via exosomes may be a mechanism of exosome-mediated drug resistance transfer.


Assuntos
Membro 1 da Subfamília B de Cassetes de Ligação de ATP/metabolismo , Neoplasias da Mama/tratamento farmacológico , Resistência a Múltiplos Medicamentos , Resistencia a Medicamentos Antineoplásicos , Exossomos , Taxoides/farmacologia , Apoptose/efeitos dos fármacos , Western Blotting , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Proliferação de Células/efeitos dos fármacos , Docetaxel , Feminino , Citometria de Fluxo , Humanos , Células Tumorais Cultivadas
16.
Tumour Biol ; 34(3): 1361-70, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23529451

RESUMO

MicroRNAs (miRNAs) are small noncoding RNAs of 19-25 nt that can regulate gene expression at a posttranscriptional level. Increasing evidence indicates that miRNAs participate in almost every step of cellular processes and are often aberrantly expressed in human cancer. miR-221 and miR-222 are two highly homologous miRNAs that always act as a gene cluster (miR-221/222) in cellular regulation and have extensively been studied in cancer network. Here, we review the role of miR-221/222 in breast cancer (BCa) development and progression: regulating proliferative signaling pathways, altering telomere and telomerase activity, avoiding cell death from tumor suppressors, autophagy and apoptosis, monitoring angiogenesis, supporting epithelial-mesenchymal transition, and even controlling cell-specific function within microenvironment. We consider that miR-221/222 act as promising biomarkers for BCa and they would offer a new way in molecular targeting cancer treatment.


Assuntos
Biomarcadores Tumorais/genética , Neoplasias da Mama/diagnóstico , MicroRNAs/genética , Neoplasias da Mama/genética , Neoplasias da Mama/terapia , Feminino , Humanos
17.
Mol Biol Rep ; 40(11): 6143-50, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-24078162

RESUMO

Docetaxel (Doc) and adriamycin (Adr) are two of the most effective chemotherapeutic agents in the treatment of breast cancer. However, their efficacy is often limited by the emergence of multidrug resistance (MDR). The purpose of this study was to investigate MDR mechanisms through analyzing systematically the expression changes of genes related to MDR in the induction process of isogenic drug resistant MCF-7 cell lines. Isogenic resistant sublines selected at 100 and 200 nM Doc (MCF-7/100 nM Doc and MCF-7/200 nM Doc) or at 500 and 1,500 nM Adr (MCF-7/500 nM Adr and MCF-7/1,500 nM) were developed from human breast cancer parental cell line MCF-7, by exposing MCF-7 to gradually increasing concentrations of Doc or Adr in vitro. Cell growth curve, flow cytometry and MTT cytotoxicity assay were preformed to evaluate the MDR characteristics developed in the sublines. Some key genes on the pathways related to drug resistance (including drug-transporters: MDR1, MRP1 and BCRP; drug metabolizing-enzymes: CYP3A4 and glutathione S-transferases (GST) pi; target genes: topoisomerase II (TopoIIα) and Tubb3; apoptosis genes: Bcl-2 and Bax) were analyzed at RNA and protein expression levels by real time RT-qPCR and western blot, respectively. Compared to MCF-7/S (30.6 h), cell doubling time of MCF-7/Doc (41.6 h) and MCF-7/Adr (33.8 h) were both prolonged, and the cell proportion of resistant sublines in G1/G2 phase increased while that in S-phase decreased. MCF-7/100 nM Doc and MCF-7/200 nM Doc was 22- and 37-fold resistant to Doc, 18- and 32-fold to Adr, respectively. MCF-7/500 nM Adr and MCF-7/1,500 nM Adr was 61- and 274-fold resistant to Adr, three and 12-fold to Doc, respectively. Meantime, they also showed cross-resistance to the other anticancer drugs in different degrees. Compared to MCF-7/S, RT-qPCR and Western blot results revealed that the expression of MDR1, MRP1, BCRP, Tubb3 and Bcl-2 were elevated in both MCF-7/Doc and MCF-7/Adr, and TopoIIα, Bax were down-regulated in both the sublines, while CYP3A4, GST pi were increased only in MCF-7/Doc and MCF-7/Adr respectively. Furthermore, the changes above were dose-dependent. The established MCF-7/Doc or MCF-7/Adr has the typical MDR characteristics, which can be used as the models for resistance mechanism study. The acquired process of MCF-7/S resistance to Doc or Adr is gradual, and is complicated with the various pathways involved in. There are some common resistant mechanisms as well as own drug-specific changes between both the sublines.


Assuntos
Antibióticos Antineoplásicos/farmacologia , Neoplasias da Mama/genética , Doxorrubicina/farmacologia , Resistência a Múltiplos Medicamentos/genética , Resistencia a Medicamentos Antineoplásicos/genética , Perfilação da Expressão Gênica , Taxoides/farmacologia , Neoplasias da Mama/metabolismo , Linhagem Celular Tumoral , Docetaxel , Relação Dose-Resposta a Droga , Feminino , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Concentração Inibidora 50 , Células MCF-7
18.
Cell Death Dis ; 12(5): 420, 2021 04 28.
Artigo em Inglês | MEDLINE | ID: mdl-33911067

RESUMO

Circular RNAs (circRNAs) are increasingly gaining importance and attention due to their diverse potential functions and their value as diagnostic biomarkers (disease specific). This study aims to explore the novel mechanisms by which exosome-contained circRNAs promote tumor development and metastasis in TNBC. We identified increased circRNA circPSMA1 in TNBC cells, their exosomes, and serum exosomes samples from TNBC patients. The overexpression of circPSMA1 promoted TNBC cell proliferation, migration, and metastasis both in vitro and in vivo. Moreover, we investigated the tumor-infiltrating immune cells (TICs) or stromal components in immune microenvironment (IME), and identified the significant differences in the immune cells between TNBC and non-TNBC samples. Mechanistically, circPSMA1 acted as a "miRNAs sponge" to absorb miR-637; miR-637 inhibited TNBC cell migration and metastasis by directly targeted Akt1, which recognized as a key immune-related gene and affected downstream genes ß-catenin and cyclin D1. Subsequent co-culture experiments also demonstrated that exosomes from TNBC carrying large amounts of circPSMA1 could transmit migration and proliferation capacity to recipient cells. Kaplan-Meier plots showed that high expression of Akt1 and low expression of mir-637 are highly correlated with poor prognosis in patients with lymph node metastasis of TNBC. Collectively, all these results reveal that circPSMA1 functions as a tumor promoter through the circPSMA1/miR-637/Akt1-ß-catenin (cyclin D1) regulatory axis, which can facilitate the tumorigenesis, metastasis, and immunosuppression of TNBC. Our research proposes a fresh perspective on novel potential biomarkers and immune treatment strategies for TNBC.


Assuntos
Ciclina D1/metabolismo , MicroRNAs/metabolismo , Complexo de Endopeptidases do Proteassoma/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , RNA Circular/metabolismo , Neoplasias de Mama Triplo Negativas/metabolismo , beta Catenina/metabolismo , Carcinogênese , Movimento Celular/fisiologia , Exossomos/genética , Exossomos/metabolismo , Exossomos/patologia , Humanos , MicroRNAs/genética , Metástase Neoplásica , Complexo de Endopeptidases do Proteassoma/metabolismo , RNA Circular/genética , Neoplasias de Mama Triplo Negativas/genética , Neoplasias de Mama Triplo Negativas/patologia , Microambiente Tumoral
19.
Epigenomics ; 12(4): 303-317, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31920104

RESUMO

Aim: We aimed to explore the roles of circular RNA, circVAPA in regulating cell migration and invasion of breast cancer. Materials & methods: CircVAPA expression was detected in breast cancer tissues and cells. The role of circVAPA was evaluated by MTT assay, wound-healing and transwell assay. The relationship between circVAPA and miR-130a-5p and the location of circVAPA were explored. Results: We discovered that circVAPA was dysregulated in breast cancer tissues and cells. Ectopic circVAPA regulated breast cancer migration, invasion and proliferation. CircVAPA was mainly expressed in the cytoplasm and could act as a miRNA sponge for miR-130a-5p, but did not regulate its parental gene. Conclusion: CircVAPA may promote migration and invasion capacity of breast cancer via harboring miR-130a-5p.


Assuntos
Neoplasias da Mama/genética , MicroRNAs/metabolismo , RNA Circular/metabolismo , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Movimento Celular/genética , Proliferação de Células/genética , Feminino , Regulação Neoplásica da Expressão Gênica , Humanos , Invasividade Neoplásica/genética , RNA Circular/genética , RNA Circular/fisiologia
20.
Epigenomics ; 12(2): 101-125, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31920098

RESUMO

Aim: Circular RNAs (circRNAs) still have many potential functions in the process of tumor development that are not completely understood. The study aims to explore novel circRNAs and their mechanisms of action in breast cancer (BCa). Materials & methods: A combination strategy of RNA-sequencing (RNA-seq) technique, quantitative real-time PCR and bioinformatic analysis was employed to identify the potential mechanisms involving differentially expressed circRNAs in the serum exosomes and tissues of BCa patients. Results: The expression levels of hsa-circRNA-0005795 and hsa-circRNA-0088088 were significantly different both in serum exosomes and tissues and might function as competing endogenous RNAs and play vital roles in BCa development. Conclusion: We constructed two circRNA-miRNA networks and provided new insight into the prognosis and therapy of BCa using circRNAs from serum exosomes.


Assuntos
Neoplasias da Mama/genética , Regulação Neoplásica da Expressão Gênica , MicroRNAs/metabolismo , RNA Circular/metabolismo , Neoplasias da Mama/metabolismo , Linhagem Celular Tumoral , Exossomos/genética , Feminino , Ontologia Genética , Humanos , Prognóstico , RNA-Seq
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA