Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Front Nutr ; 11: 1426780, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39021599

RESUMO

Metabolic dysfunction-associated fatty liver disease (MAFLD) is a chronic liver disease that progresses from hepatic steatosis to non-alcoholic steatohepatitis, cirrhosis, and liver cancer, posing a huge burden on human health. Existing research has confirmed that forkhead box O1 (FOXO1), as a member of the FOXO transcription factor family, is upregulated in MAFLD. Its activity is closely related to nuclear-cytoplasmic shuttling and various post-translational modifications including phosphorylation, acetylation, and methylation. FOXO1 mediates the progression of MAFLD by regulating glucose metabolism, lipid metabolism, insulin resistance, oxidative stress, hepatic fibrosis, hepatocyte autophagy, apoptosis, and immune inflammation. This article elaborates on the regulatory role of FOXO1 in MAFLD, providing a summary and new insights for the current status of drug research and targeted therapies for MAFLD.

2.
Materials (Basel) ; 17(15)2024 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-39124506

RESUMO

This work investigated the effects of moisture absorption treatment on composite-to-metal double-lap shear joints (DLSJs) bonded with epoxy adhesive film through experiments and simulations. The composite-to-metal DLSJ can be divided into five parts (the interface between the composite and adhesive, the interface between the adhesive and metal, the composite adherend, the metal adherend, and the adhesive layer). First, the wet-dependent properties of the adhesive and interfaces were obtained through adhesive tensile tests and GC tests, which showed that the properties of the adhesive and interfaces were significantly affected by the moist environment. Then, tensile tests of the composite-to-metal double-lap shear joints were carried out in dry and wet environments. Finally, based on the experimental investigations, a finite element (FE) model that considered cohesive damage was established for simulating damage evolution and predicting the failure loads and failure modes of the DLSJs. The results of both the experimental and numerical tests show that the DLSJ failure load decreases significantly after immersion in 95 °C water, and the major failure mode transfers from adhesive failure to interface failure. The research results provide a theoretical basis or basic data for the structural design of adhesively bonded composite-to-metal.

3.
Materials (Basel) ; 17(6)2024 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-38541477

RESUMO

The toughening modification of epoxy resin has received widespread attention. The addition of the second-phase resin has a good toughening effect on epoxy resin. In order to investigate the effect of the second-phase resin on the interphase of composites, in this work the interfacial properties of carbon fiber (CF)/epoxy resin with the second-phase resin structure were investigated. Methodologies including surface structure observation, chemical characteristics, surface energy of the CF, and micro-phase structure characterization of resin were tested, followed by the micro-interfacial performance of CF/epoxy composites before and after hygrothermal treatment. The results revealed that the sizing process has the positive effect of increasing the interfacial bonding properties of CF/epoxy. From the interfacial shear strength (IFSS) test, the introduction of the second phase in the resin reduced the interfacial bonding performance between the CF and epoxy. After the hygrothermal treatment, water molecules diffused along the interfacial paths between the two resins, which in turn created defects and consequently brought about a reduction in the IFSS.

4.
Cell Signal ; 118: 111141, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38492624

RESUMO

Cholangiocarcinoma (CCA) is a malignancy with an extremely poor prognosis, and much remains unknown about its pathogenesis and treatment modalities. Circular RNA (circRNA) has been proven to play regulatory roles in various tumorigenesis, yet its potential function and mechanism in cholangiocarcinoma require further investigation. This study is the first to identify the aberrant expression and functional role of a novel circRNA, circ_0007534, derived from the DDX42 gene, in cholangiocarcinoma. Compared to the normal control group, the expression of circ_0007534 was significantly elevated in the tissues and cells with CCA and that high expression correlated with lymph node invasion and poor prognosis. Functional experiments indicated that downregulating circ_0007534 markedly inhibited the proliferation, migration, invasion, stemness, and anti-anoikis ability of CCA cells, as well as the tumor growth and liver and lung metastasis in nude mice. Mechanistic studies revealed that DDX42, as the parent gene of circ_0007534, can mutually regulate each other's expression. Predominantly located in the cytoplasm, circ_0007534 can form a complex with the RNA-binding protein DDX3X, which enhances the stability of DDX42 mRNA, thereby upregulating the expression of DDX42. This creates a positive feedback loop among the three, collectively promoting the progression of cholangiocarcinoma. In conclusion, this study sheds light on the pivotal role and molecular mechanism of circ_0007534 in the development of CCA, offering potential new targets for early diagnosis and treatment.


Assuntos
Neoplasias dos Ductos Biliares , Colangiocarcinoma , MicroRNAs , Animais , Camundongos , MicroRNAs/genética , MicroRNAs/metabolismo , RNA Circular/genética , RNA Circular/metabolismo , Anoikis , Camundongos Nus , Retroalimentação , Linhagem Celular Tumoral , Colangiocarcinoma/genética , Colangiocarcinoma/metabolismo , Ductos Biliares Intra-Hepáticos/metabolismo , Neoplasias dos Ductos Biliares/genética , Neoplasias dos Ductos Biliares/metabolismo , Proliferação de Células/genética , Regulação Neoplásica da Expressão Gênica , Movimento Celular/genética
5.
Front Biosci (Landmark Ed) ; 29(1): 45, 2024 01 23.
Artigo em Inglês | MEDLINE | ID: mdl-38287825

RESUMO

Pancreatic cancer is a malignancy that affects the digestive tract and has a low 5-year survival rate of lower than 15%. Owing to its genetic mutation and metabolic complexity, pancreatic cancer is difficult to treat with surgical resection, radiotherapy, and chemotherapy. The predominant modality of pancreatic cancer is pancreatic ductal adenocarcinoma (PDAC), primarily attributed to mutations in KRAS gene. Ferroptosis, an iron-mediated reactive oxygen species (ROS)-elevated nonapoptotic cell death caused by lipid peroxidation, is distinct from any other known type of cell death. Ferroptosis is closely related to the occurrence and progression of different types of cancers, including PDAC. Previous research has demonstrated that ferroptosis not only triggers cell death in PDAC and hampers tumor growth but also enhances the effectiveness of antitumor medications. In our review, we mainly focus on the core mechanism of ferroptosis, reveal its interrelationship with PDAC, and illustrate the progress of ferroptosis in different treatment methods of PDAC.


Assuntos
Carcinoma Ductal Pancreático , Ferroptose , Neoplasias Pancreáticas , Humanos , Ferroptose/genética , Neoplasias Pancreáticas/tratamento farmacológico , Neoplasias Pancreáticas/genética , Carcinoma Ductal Pancreático/tratamento farmacológico , Carcinoma Ductal Pancreático/genética , Mutação , Morte Celular
6.
J Zhejiang Univ Sci B ; 25(2): 123-134, 2024 Feb 15.
Artigo em Inglês, Zh | MEDLINE | ID: mdl-38303496

RESUMO

The technology of three-dimensional (3D) printing emerged in the late 1970s and has since undergone considerable development to find numerous applications in mechanical engineering, industrial design, and biomedicine. In biomedical science, several studies have initially found that 3D printing technology can play an important role in the treatment of diseases in hepatopancreatobiliary surgery. For example, 3D printing technology has been applied to create detailed anatomical models of disease organs for preoperative personalized surgical strategies, surgical simulation, intraoperative navigation, medical training, and patient education. Moreover, cancer models have been created using 3D printing technology for the research and selection of chemotherapy drugs. With the aim to clarify the development and application of 3D printing technology in hepatopancreatobiliary surgery, we introduce seven common types of 3D printing technology and review the status of research and application of 3D printing technology in the field of hepatopancreatobiliary surgery.


Assuntos
Modelos Anatômicos , Impressão Tridimensional , Humanos , Simulação por Computador
7.
Materials (Basel) ; 17(13)2024 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-38998370

RESUMO

In this study, a one-pot aryl diazonium reaction was used as a simple and mild method to graft graphene onto the smooth and inert surface of T1100-grade carbon fiber (CF) through covalent bonding without any damage on CF, to refine the interface performance of CF/bismaleimide (BMI) composites. XPS, SEM, AFM, and dynamic contact angle testing (DCAT) were used to characterize chemical activity, morphologies, and wettability on untreated and grafted CF surfaces. Meanwhile, the impact of the graft method on the tensile strength of CF was also examined using the monofilament tensile test. IFSS between CF grafted with graphene and BMI resin achieved 104.2 MPa after modification, increasing from 85.5 MPa by 21.8%, while the tensile strength did not decrease compared to the pristine CF. The mechanism of this interface enhancement might be better chemical bonding and mechanical interlock between CF grafted with graphene and BMI resin, which is generated from the high surface chemical activity and rough structure of graphene. This study may propose a simple and mild method to functionalize the CF surface and enhance the interface performance of composites without compromising the tensile properties of T1100-grade CF.

8.
J Cancer ; 15(8): 2214-2228, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38495490

RESUMO

Pancreatic ductal adenocarcinoma (PDAC) is an aggressive disease with a notably poor prognosis. A large number of patients with PDAC develop metastases before they are diagnosed with metastatic pancreatic cancer (mPDAC). For mPDAC, FOLFIRINOX or gemcitabine plus nab-paclitaxel are the current first-line treatments. It is important to note, however, that many patients will fail chemotherapy because of drug resistance. ​Heterogeneous tumors and complex tumor microenvironments are key factors. As a result, clinical researchers are exploring a variety of alternative treatment modalities. Current understanding of the molecular signature and immune landscape of PDAC has motivated the emergence of different targeted and immune-based therapeutic approaches, some of which have shown promising results. The purpose of this review is to discuss the new targets and new drugs for mPDAC in terms of specific pathogenic factors such as metabolic vulnerability, DNA damage repair system, tumor microenvironment and immune system, in order to identify potential vulnerabilities in mPDAC patients and hopefully improve the prognosis of mPDAC patients.

9.
Front Pharmacol ; 15: 1308309, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38681199

RESUMO

Epigenetic changes are heritable changes in gene expression without changes in the nucleotide sequence of genes. Epigenetic changes play an important role in the development of cancer and in the process of malignancy metastasis. Previous studies have shown that abnormal epigenetic changes can be used as biomarkers for disease status and disease prediction. The reversibility and controllability of epigenetic modification changes also provide new strategies for early disease prevention and treatment. In addition, corresponding drug development has also reached the clinical stage. In this paper, we will discuss the recent progress and application status of tumor epigenetic biomarkers from three perspectives: DNA methylation, non-coding RNA, and histone modification, in order to provide new opportunities for additional tumor research and applications.

10.
Polymers (Basel) ; 16(1)2023 Dec 28.
Artigo em Inglês | MEDLINE | ID: mdl-38201755

RESUMO

The nanocomposites with reversible cross-linking covalent bonds were prepared by reacting furfurylamine (FA)-modified diglycidyl ether of bisphenol A (DGEBA) and furfuryl-functionalized aniline trimer-modified graphene (TFAT-G) with bismaleimide (BMI) via the Diels-Alder (DA) reaction. The successful synthesis of the TFAT modifier is confirmed by nuclear magnetic resonance (NMR) hydrogen spectroscopy and IR spectroscopy tests. The structure and properties of TFAT-G epoxy nanocomposites are characterized by scanning electron microscopy (SEM), differential scanning calorimeter (DSC), tensile, and resistivity. The results show that TFAT-G was uniformly dispersed in the resin, and 1 wt% TFAT-G composites increased to 233% for tensile strength, 63% for elongation at break, 66% for modulus, and 7.8 °C for Tg. In addition, the addition of unmodified graphene degrades the mechanical properties of the composite. Overall, the graphene/self-healing resin nanocomposites have both good self-healing function and electrical conductivity by adding 1 wt% modified graphene; this allows for the maintenance of the original 83% strength and 89% electrical conductivity after one cycle of heating repair.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA