Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
1.
Mov Disord ; 2024 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-38798069

RESUMO

BACKGROUND: Spinocerebellar ataxia type 12 (SCA12) is a neurodegenerative disease caused by a CAG/CTG repeat expansion at the PPP2R2B locus. OBJECTIVE: We investigated how the CAG repeat expansion within the PPP2R2B 7B7D transcript influences the expression of Bß1 and a potential protein containing a long polyserine tract. METHODS: Transcript and protein expression were measured using quantitative PCR (qPCR) Role of Bß1 overexpression in the pathogenesis of SCA12 and Western blot, respectively, in an SK-N-MC cell model that overexpresses the full-length PPP2R2B 7B7D transcript. The apoptotic effect of a protein containing a long polyserine tract on SK-N-MC cells was evaluated using caspase 3/7 activity. RESULTS: The CAG repeat expansion increases the expression of the PPP2R2B 7B7D transcript, as well as Bß1 protein, in an SK-N-MC cell model in which the full-length PPP2R2B 7B7D transcript is overexpressed. The CAG repeat expansion within the 7B7D transcript is translated into a long polyserine tract that triggers apoptosis in SK-N-MC cells. CONCLUSIONS: The SCA12 mutation leads to overexpression of PPP2R2B Bß1 and to expression of a protein containing a long polyserine tract; both these effects potentially contribute to SCA12 pathogenesis. © 2024 International Parkinson and Movement Disorder Society.

2.
Mov Disord ; 38(12): 2230-2240, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37735923

RESUMO

BACKGROUND: Spinocerebellar ataxia type 12 (SCA12) is a neurodegenerative disease caused by expansion of a CAG repeat in the PPP2R2B gene. OBJECTIVE: In this study, we tested the hypothesis that the PPP2R2B antisense (PPP2R2B-AS1) transcript containing a CUG repeat is expressed and contributes to SCA12 pathogenesis. METHODS: Expression of PPP2R2B-AS1 transcript was detected in SCA12 human induced pluripotent stem cells (iPSCs), iPSC-derived NGN2 neurons, and SCA12 knock-in mouse brains using strand-specific reverse transcription polymerase chain reaction. The tendency of expanded PPP2R2B-AS1 (expPPP2R2B-AS1) RNA to form foci, a marker of toxic processes involving mutant RNAs, was examined in SCA12 cell models by fluorescence in situ hybridization. The apoptotic effect of expPPP2R2B-AS1 transcripts on SK-N-MC neuroblastoma cells was evaluated by caspase 3/7 activity. Western blot was used to examine the expression of repeat associated non-ATG-initiated translation of expPPP2R2B-AS1 transcript in SK-N-MC cells. RESULTS: The repeat region in the PPP2R2B gene locus is bidirectionally transcribed in SCA12 iPSCs, iPSC-derived NGN2 neurons, and SCA12 mouse brains. Transfected expPPP2R2B-AS1 transcripts induce apoptosis in SK-N-MC cells, and the apoptotic effect may be mediated, at least in part, by the RNA secondary structure. The expPPP2R2B-AS1 transcripts form CUG RNA foci in SK-N-MC cells. expPPP2R2B-AS1 transcript is translated in the alanine open reading frame (ORF) via repeat-associated non-ATG translation, which is diminished by single-nucleotide interruptions within the CUG repeat and MBNL1 overexpression. CONCLUSIONS: These findings suggest that PPP2R2B-AS1 contributes to SCA12 pathogenesis and may therefore provide a novel therapeutic target for the disease. © 2023 International Parkinson and Movement Disorder Society.


Assuntos
Sequências Repetitivas de Aminoácidos , Ataxias Espinocerebelares , Transcrição Gênica , Células-Tronco Pluripotentes Induzidas , Neurônios/patologia , Apoptose/genética , Linhagem Celular , Sequências Repetitivas de Aminoácidos/genética , Proteínas de Ligação a RNA/metabolismo , Proteína Fosfatase 2/genética , Proteína Fosfatase 2/metabolismo , Técnicas de Introdução de Genes , Humanos , Animais , Camundongos , Ataxias Espinocerebelares/genética , Ataxias Espinocerebelares/fisiopatologia , RNA Antissenso/genética
3.
Biotechnol Lett ; 37(2): 289-98, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25257596

RESUMO

Immature dendritic cells (iDCs) are for cell transplantation; however, no method has yet been developed for in vivo monitoring the transplanted iDCs. We have explored the feasibility of using superparamagnetic iron oxide (SPIO) labeling and magnetic resonance imaging for in vivo tracking of transplanted iDCs and determined the effects of SPIO labeling on iDC vaccination. With up to 50 µg Fe/ml, SPIO effectively labeled the iDCs without affecting their growth. At or above 100 µg Fe/ml, SPIO caused considerable damage to iDCs. SPIO labeling resulted in autophagosome formation and decreased the uptake of oxidized low density lipoprotein (ox-LDL), an exogenous antigen, by iDCs. SPIO and ox-LDL both localized to the lysosomes, and this competition for lysosomes could be partially responsible for the decreased ox-LDL phagocytic capacity of iDCs due to SPIO labeling.


Assuntos
Células Dendríticas/efeitos dos fármacos , Lisossomos/efeitos dos fármacos , Nanopartículas de Magnetita/química , Animais , Aspirina , Autofagia/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Células Dendríticas/metabolismo , Lisossomos/metabolismo , Nanopartículas de Magnetita/toxicidade , Coelhos , Vacinação
4.
Stem Cell Res ; 77: 103441, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38759410

RESUMO

Spinocerebellar ataxia type 12 (SCA12) is caused by a CAG expansion mutation in PPP2R2B, a gene encoding brain-specific regulatory units of protein phosphatase 2A (PP2A); while normal alleles carry 4 to 31 triplets, the disease alleles carry 43 to 78 triplets. Here, by CRISPR/Cas9n genome editing, we have generated a human heterozygous SCA12 iPSC line with 73 triplets for the mutant allele. The heterozygous SCA12 iPSCs have normal karyotype, express pluripotency markers and are able to differentiate into the three germ layers.


Assuntos
Edição de Genes , Heterozigoto , Células-Tronco Pluripotentes Induzidas , Mutação , Ataxias Espinocerebelares , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Edição de Genes/métodos , Ataxias Espinocerebelares/genética , Ataxias Espinocerebelares/patologia , Linhagem Celular , Sistemas CRISPR-Cas/genética , Proteína Fosfatase 2/genética , Proteína Fosfatase 2/metabolismo , Proteínas do Tecido Nervoso
5.
bioRxiv ; 2024 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-39026712

RESUMO

Stepping movement is delta (1-4 Hz) rhythmic and depends on sensory inputs. In addition to delta rhythms, beta (10-30 Hz) frequency dynamics are also prominent in the motor circuits and are coupled to neuronal delta rhythms both at the network and the cellular levels. Since beta rhythms are broadly supported by cortical and subcortical sensorimotor circuits, we explore how beta-frequency sensory stimulation influences delta-rhythmic stepping movement, and dorsal striatal circuit regulation of stepping. We delivered audiovisual stimulation at 10 Hz or 145 Hz to mice voluntarily locomoting, while simultaneously recording stepping movement, striatal cellular calcium dynamics and local field potentials (LFPs). We found that 10 Hz, but not 145 Hz stimulation prominently entrained striatal LFPs. Even though sensory stimulation at both frequencies promoted locomotion and desynchronized striatal network, only 10 Hz stimulation enhanced the delta rhythmicity of stepping movement and strengthened the coupling between stepping and striatal LFP delta and beta oscillations. These results demonstrate that higher frequency sensory stimulation can modulate lower frequency dorsal striatal neural dynamics and improve stepping rhythmicity, highlighting the translational potential of non-invasive beta-frequency sensory stimulation for improving gait.

6.
Biomed Mater ; 19(2)2024 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-38215489

RESUMO

Atherosclerosis is a chronic inflammatory disease characterized by the accumulation of cholesterol within the arterial wall. Its progression can be monitored via magnetic resonance imaging (MRI). Ultrasmall Superparamagnetic Particles of Iron Oxide (USPIO) (<5 nm) have been employed as T1 contrast agents for MRI applications. In this study, we synthesized USPIO with an average surface carboxylation of approximately 5.28 nm and a zeta potential of -47.8 mV. These particles were phagocytosed by mouse aortic endothelial cells (USPIO-MAECs) and endothelial progenitor cells (USPIO-EPCs), suggesting that they can be utilized as potential contrast agent and delivery vehicle for the early detection of atherosclerosis. However, the mechanism by which this contrast agent is delivered to the plaque remains undetermined. Our results demonstrated that with increasing USPIO concentration during 10-100 µg ml-1, consistent change appeared in signal enhancement on T1-weighted MRI. Similarly, T1-weighted MRI of MAECs and EPCs treated with these concentrations exhibited a regular change in signal enhancement. Prussian blue staining of USPIO revealed substantial absorption into MAECs and EPCs after treatment with 50 µg ml-1USPIO for 24 h. The iron content in USPIO-EPCs was much higher (5 pg Fe/cell) than in USPIO-MAECs (0.8 pg Fe/cell). In order to substantiate our hypothesis that CD40 protein on the cell surface facilitates migration towards inflammatory cells, we utilized AuNPs-PEI (gold nanoparticles-polyethylenimine) carrying siRNACD40to knockout CD40 expression in MAECs. It has been documented that gold nanoparticle-oligonucleotide complexes could be employed as intracellular gene regulation agents for the control of protein level in cells. Our results confirmed that macrophages are more likely to bind to MAECs treated with AuNPs-PEI-siRNANC(control) for 72 h than to MAECs treated with AuNPs-PEI-siRNACD40(reduced CD40 expression), thus confirming CD40 targeting at the cellular level. When USPIO-MAECs and MAECs (control) were delivered to mice (high-fat-fed) via tail vein injection respectively, we observed a higher iron accumulation in plaques on blood vessels in high-fat-fed mice treated with USPIO-MAECs. We also demonstrated that USPIO-EPCs, when delivered to high-fat-fed mice via tail vein injection, could indeed label plaques by generating higher T1-weighted MRI signals 72 h post injection compared to controls (PBS, USPIO and EPCs alone). In conclusion, we synthesized a USPIO suitable for T1-weighted MRI. Our results have confirmed separately at the cellular and tissue andin vivolevel, that USPIO-MAECs or USPIO-EPCs are more accessible to atherosclerotic plaques in a mouse model. Furthermore, the high expression of CD40 on the cell surface is a key factor for targeting and USPIO-EPCs may have potential therapeutic effects.


Assuntos
Aterosclerose , Nanopartículas de Magnetita , Placa Aterosclerótica , Camundongos , Animais , Placa Aterosclerótica/patologia , Meios de Contraste , Ouro , Células Endoteliais , Aterosclerose/diagnóstico por imagem , Dextranos , Imageamento por Ressonância Magnética/métodos , Ferro , RNA Interferente Pequeno
7.
bioRxiv ; 2023 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-37066173

RESUMO

OBJECTIVE: Spinocerebellar ataxia type 12 (SCA12) is a neurodegenerative disease caused by expansion of a CAG repeat in the PPP2R2B gene . Here we tested the hypothesis that the PPP2R2B antisense ( PPP2R2B-AS1 ) transcript containing a CUG repeat is expressed and contributes to SCA12 pathogenesis. METHODS: Expression of PPP2R2B-AS1 transcript was detected in SCA12 human induced pluripotent stem cells (iPSCs), iPSC-derived NGN2 neurons, and SCA12 knock-in mouse brains using strand-specific RT-PCR (SS-RT-PCR). The tendency of expanded PPP2R2B-AS1 ( expPPP2R2B-AS1 ) RNA to form foci, a marker of toxic processes involving mutant RNAs, was examined in SCA12 cell models by fluorescence in situ hybridization. The toxic effect of expPPP2R2B-AS1 transcripts on SK-N-MC neuroblastoma cells was evaluated by caspase 3/7 activity. Western blot was used to examine the expression of repeat associated non-ATG-initiated (RAN) translation of expPPP2R2B-AS1 transcript in SK-N-MC cells. RESULTS: The repeat region in PPP2R2B gene locus is bidirectionally transcribed in SCA12 iPSCs, iPSC-derived NGN2 neurons, and SCA12 mouse brains. Transfected expPPP2R2B-AS1 transcripts are toxic to SK-N-MC cells, and the toxicity may be mediated, at least in part, by the RNA secondary structure. The expPPP2R2B-AS1 transcripts form CUG RNA foci in SK-N-MC cells. expPPP2R2B-AS1 transcript is translated in the Alanine ORF via repeat-associated non-ATG (RAN) translation, which is diminished by single nucleotide interruptions within the CUG repeat, and MBNL1 overexpression. INTERPRETATION: These findings suggest that PPP2R2B-AS1 contributes to SCA12 pathogenesis, and may therefore provide a novel therapeutic target for the disease.

8.
Front Neurosci ; 17: 1277501, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37965217

RESUMO

Mutations in autism spectrum disorder (ASD) risk genes disrupt neural network dynamics that ultimately lead to abnormal behavior. To understand how ASD-risk genes influence neural circuit computation during behavior, we analyzed the hippocampal network by performing large-scale cellular calcium imaging from hundreds of individual CA1 neurons simultaneously in transgenic mice with total knockout of the X-linked ASD-risk gene NEXMIF (neurite extension and migration factor). As NEXMIF knockout in mice led to profound learning and memory deficits, we examined the CA1 network during voluntary locomotion, a fundamental component of spatial memory. We found that NEXMIF knockout does not alter the overall excitability of individual neurons but exaggerates movement-related neuronal responses. To quantify network functional connectivity changes, we applied closeness centrality analysis from graph theory to our large-scale calcium imaging datasets, in addition to using the conventional pairwise correlation analysis. Closeness centrality analysis considers both the number of connections and the connection strength between neurons within a network. We found that in wild-type mice the CA1 network desynchronizes during locomotion, consistent with increased network information coding during active behavior. Upon NEXMIF knockout, CA1 network is over-synchronized regardless of behavioral state and fails to desynchronize during locomotion, highlighting how perturbations in ASD-implicated genes create abnormal network synchronization that could contribute to ASD-related behaviors.

9.
Front Bioeng Biotechnol ; 10: 805996, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35273955

RESUMO

Nanomaterials have been widely studied for their potential to become the new generation of nanocarriers in gene transfection, yet it remains still difficult to apply them efficiently and succinctly to plant cells. Poly (2-(N,N-dimethylamino) ethyl methacrylate) (PDMAEMA), which possesses temperature and pH dual-sensitivity, has largely been applied in animal cells, but it is rarely involved in plant cells. As a proof of concept, PDMAEMA as a gene carrier is incubated with plasmid GFP (pGFP) to explore its transfection ability in plants, and cationic polymer polyethylenimine (PEI) is used as a control. pGFP was efficiently condensed into the nanostructure by electrostatic interactions at an N/P (amino group from cationic polymers/phosphate group from plasmid DNA (pDNA)) ratio of 15; after complexation into nanocarriers, pGFP was protected from endonuclease degradation according to the DNase I digestion assay. After incubation with protoplasts and leaves, GFP was observed with confocal microscopy in plant cells. Western blot experiments confirmed GFP expression at the protein level. Toxicity assay showed PDMAEMA had a lower toxicity than PEI. These results showed that transient expression of pGFP was readily achieved in Arabidopsis thaliana and Nicotiana benthamiana. Notably, PDMAEMA showed lower cytotoxicity than PEI upon incubation with Nicotiana benthamiana leaves. PDMAEMA exhibited great potency for DNA delivery in plant cells. This work provides us with new ideas of more concise and more effective methods for plant transformation.

10.
Pharmaceutics ; 14(5)2022 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-35631669

RESUMO

Atherosclerosis is the leading cause of global morbidity and mortality. Its therapy requires research in several areas, such as diagnosis of early arteriosclerosis, improvement of the pharmacokinetics and bioavailability of rapamycin as its therapeutic agents. Here, we used the targeting peptide VHPKQHR (VHP) (or fluorescent reagent) to modify the phospholipid molecules to target vascular cell adhesion molecule-1 (VCAM-1) and loaded ultrasmall paramagnetic iron oxide (USPIO/Fe3O4) plus rapamycin (Rap) to Rap/Fe3O4@VHP-Lipo (VHPKQHR-modified magnetic liposomes coated with Rap). This nanoparticle can be used for both the diagnosis and therapy of early atherosclerosis. We designed both an ex vivo system with mouse aortic endothelial cells (MAECs) and an in vivo system with ApoE knockout mice to test the labeling and delivering potential of Rap/Fe3O4@VHP-Lipo with fluorescent microscopy, flow cytometry and MRI. Our results of MRI imaging and fluorescence imaging showed that the T2 relaxation time of the Rap/Fe3O4@VHP-Lipo group was reduced by 2.7 times and 1.5 times, and the fluorescence intensity increased by 3.4 times and 2.5 times, respectively, compared with the normal saline group and the control liposome treatment group. It showed that Rap/Fe3O4@VHP-Lipo realized the diagnosis of early AS. Additionally, our results showed that, compared with the normal saline and control liposomes treatment group, the aortic fluorescence intensity of the Rap/Fe3O4@VHP-Lipo treatment group was significantly weaker, and the T2 relaxation time was prolonged by 8.9 times and 2.0 times, indicating that the targeted diagnostic agent detected the least plaques in the Rap/Fe3O4@VHP-Lipo treatment group. Based on our results, the synthesized theragnostic Rap/Fe3O4@VHP-Lipo serves as a great label for both MRI and fluorescence bimodal imaging of atherosclerosis. It also has therapeutic effects for the early treatment of atherosclerosis, and it has great potential for early diagnosis and can achieve the same level of therapy with a lower dose of Rap.

11.
iScience ; 25(6): 104479, 2022 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-35712078

RESUMO

Huanglongbing (HLB) is a devastating disease of citrus, which is mostly caused by Candidatus Liberibacter asiaticus (CLas). To realize the specific application of nano-transgenic technology in HLB, AuNPs-PEI (Gold Nanoparticles-Polyethylenimine) was used to carry foreign genes into the leaves of periwinkle (Catharanthus roseus) by infiltration. Here, we demonstrated that NPR1-GFP protein expression was observed from the 12th hour to the 10th day after infiltrating AuNPs-PEI-pNPR1 (Arabidopsis thaliana nonexpressor of pathogenesis-related gene 1)-GFP. Fluorescence of mCherry was observed 6 h after AuNPs-PEI-pNLS (nuclear localization signal sequence)-mCherry infiltration and fluorescence of FAM was observed in the nucleus 4 h after AuNPs-PEI-FAM-siRNA NPR1 infiltration. In addition, NPR1-GFP expression in CLas-infected periwinkle leaves was significantly higher than that in healthy periwinkle leaves after infiltration. Our work confirmed that the expression of exogenous NPR1-GFP could reduce the CLas titers by promoting the expression of PR (pathogenesis related) genes and ICS (isochorismate synthase) gene.

12.
Front Bioeng Biotechnol ; 10: 821256, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35295653

RESUMO

Magnetic resonance imaging (MRI) could be the ideal diagnostic modality for early rheumatoid arthritis (RA). Vascular cell adhesion molecule-1 (VCAM-1) is highly expressed in synovial locations in patients with RA, which could be a potential target protein for RA diagnosis. The peptide VHPKQHR (VHP) has a high affinity to VCAM-1. To make the contrast agent to target RA at an early stage, we used VHP and ultrasmall paramagnetic iron oxide (USPIO) to synthesize UVHP (U stands for USPIO) through a chemical reaction with 1-(3-dimethylaminopropyl)-3-ethylcarbodiimide hydrochloride and N-hydroxysuccinimide. The size of UVHP was 6.7 nm; the potential was -27.7 mV, and the r 2/r 1 value was 1.73. Cytotoxicity assay exhibited that the cell survival rate was higher than 80% at even high concentrations of UVHP (Fe concentration 200 µg/mL), which showed the UVHP has low toxicity. Compared with no TNF-α stimulation, VCAM-1 expression was increased nearly 3-fold when mouse aortic endothelial cells (MAECs) were stimulated with 50 ng/mL TNF-α; cellular Fe uptake was increased very significantly with increasing UVHP concentration under TNF-α treatment; cellular Fe content was 17 times higher under UVHP with Fe concentration 200 µg/mL treating MAECs. These results indicate that UVHP can target overexpression of VCAM-1 at the cellular level. RA mice models were constructed with adjuvant-induced arthritis. In vivo MRI and biodistribution results show that the signal intensity of knee joints was increased significantly and Fe accumulation in RA model mice compared with normal wild-type mice after injecting UVHP 24 h. These results suggest that we have synthesized a simple, low-cost, and less toxic contrast agent UVHP, which targeted VCAM-1 for early-stage RA diagnosis and generates high contrast in T1-weighted MRI.

13.
Front Plant Sci ; 12: 760481, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34868155

RESUMO

Huanglongbing (HLB) is the most severe bacterial disease of citrus crops caused by Candidatus Liberibacter spp. It causes a reduction in fruit yield, poor fruit quality, and even plants death. Due to the lack of effective medicine, HLB is also called citrus "AIDS." Currently, it is essential for the prevention and control of HLB to use antibiotics and pesticides while reducing the spread of HLB by cultivating pathogen-free seedlings, removing disease trees, and killing Asian citrus psyllid (ACP). New compounds [e.g., antimicrobial peptides (AMPs) and nanoemulsions] with higher effectiveness and less toxicity were also found and they have made significant achievements. However, further evaluation is required before these new antimicrobial agents can be used commercially. In this review, we mainly introduced the current strategies from the aspects of physical, chemical, and biological and discussed their environmental impacts. We also proposed a green and ecological strategy for controlling HLB basing on the existing methods and previous research results.

14.
Diagnostics (Basel) ; 11(12)2021 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-34943462

RESUMO

This study aims to explore the relationship between neuropathologic and the post-surgical prognosis of focal cortical dysplasia (FCD) typed-Ⅲ-related medically refractory epilepsy. A total of 266 patients with FCD typed-Ⅲ-related medically refractory epilepsy were retrospectively studied. Presurgical clinical data, type of surgery, and postsurgical seizure outcome were analyzed. The minimum post-surgical follow-up was 1 year. A total of 266 patients of FCD type Ⅲ were included in this study and the median follow-up time was 30 months (range, 12~48 months). Age at onset ranged from 1.0 years to 58.0 years, with a median age of 12.5 years. The number of patients under 12 years old was 133 (50%) in patients with FCD type Ⅲ. A history of febrile seizures was present in 42 (15.8%) cases. In the entire postoperative period, 179 (67.3%) patients were seizure-free. Factors with p < 0.15 in univariate analysis, such as age of onset of epilepsy (p = 0.145), duration of epilepsy (p = 0.004), febrile seizures (p = 0.150), being MRI-negative (p = 0.056), seizure type (p = 0.145) and incomplete resection, were included in multivariate analysis. Multivariate analyses revealed that MRI-negative findings of FCD (OR 0.34, 95% CI 0.45-0.81, p = 0.015) and incomplete resection (OR 0.12, 95% CI 0.05-0.29, p < 0.001) are independent predictors of unfavorable seizure outcomes. MRI-negative finding of FCD lesions and incomplete resection were the most important predictive factors for poor seizure outcome in patients with FCD type Ⅲ.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA