Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Immunol ; 201(3): 1097-1103, 2018 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-29914887

RESUMO

The generation of cellular heterogeneity is an essential feature of immune responses. Understanding the heritability and asymmetry of phenotypic changes throughout this process requires determination of clonal-level contributions to fate selection. Evaluating intraclonal and interclonal heterogeneity and the influence of distinct fate determinants in large numbers of cell lineages, however, is usually laborious, requiring familial tracing and fate mapping. In this study, we introduce a novel, accessible, high-throughput method for measuring familial fate changes with accompanying statistical tools for testing hypotheses. The method combines multiplexing of division tracking dyes with detection of phenotypic markers to reveal clonal lineage properties. We illustrate the method by studying in vitro-activated mouse CD8+ T cell cultures, reporting division and phenotypic changes at the level of families. This approach has broad utility as it is flexible and adaptable to many cell types and to modifications of in vitro, and potentially in vivo, fate monitoring systems.


Assuntos
Divisão Celular/fisiologia , Linhagem da Célula/fisiologia , Corantes/metabolismo , Animais , Biomarcadores/metabolismo , Linfócitos T CD8-Positivos/metabolismo , Linfócitos T CD8-Positivos/fisiologia , Proliferação de Células/fisiologia , Rastreamento de Células/métodos , Camundongos , Camundongos Endogâmicos C57BL
2.
Proc Natl Acad Sci U S A ; 111(17): 6377-82, 2014 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-24733943

RESUMO

Stochastic variation in cell cycle time is a consistent feature of otherwise similar cells within a growing population. Classic studies concluded that the bulk of the variation occurs in the G1 phase, and many mathematical models assume a constant time for traversing the S/G2/M phases. By direct observation of transgenic fluorescent fusion proteins that report the onset of S phase, we establish that dividing B and T lymphocytes spend a near-fixed proportion of total division time in S/G2/M phases, and this proportion is correlated between sibling cells. This result is inconsistent with models that assume independent times for consecutive phases. Instead, we propose a stretching model for dividing lymphocytes where all parts of the cell cycle are proportional to total division time. Data fitting based on a stretched cell cycle model can significantly improve estimates of cell cycle parameters drawn from DNA labeling data used to monitor immune cell dynamics.


Assuntos
Linfócitos B/citologia , Ciclo Celular , Linfócitos T/citologia , Animais , Bromodesoxiuridina/metabolismo , Divisão Celular , Proliferação de Células , DNA/metabolismo , Fluorescência , Genes Reporter , Camundongos , Camundongos Endogâmicos C57BL , Modelos Imunológicos , Probabilidade , Fatores de Tempo
3.
Nat Commun ; 12(1): 1344, 2021 02 26.
Artigo em Inglês | MEDLINE | ID: mdl-33637722

RESUMO

During cellular differentiation chromosome conformation is intricately remodelled to support the lineage-specific transcriptional programs required for initiating and maintaining lineage identity. When these changes occur in relation to cell cycle, division and time in response to cellular activation and differentiation signals has yet to be explored, although it has been proposed to occur during DNA synthesis or after mitosis. Here, we elucidate the chromosome conformational changes in B lymphocytes as they differentiate and expand from a naive, quiescent state into antibody secreting plasma cells. We find gene-regulatory chromosome reorganization in late G1 phase before the first division, and that this configuration is remarkably stable as the cells massively and rapidly clonally expand. A second wave of conformational change occurs as cells terminally differentiate into plasma cells, coincident with increased time in G1 phase. These results provide further explanation for how lymphocyte fate is imprinted prior to the first division. They also suggest that chromosome reconfiguration occurs prior to DNA replication and mitosis, and is linked to a gene expression program that controls the differentiation process required for the generation of immunity.


Assuntos
Linfócitos B/fisiologia , Diferenciação Celular/genética , Diferenciação Celular/fisiologia , Genoma , Ativação Linfocitária/genética , Ativação Linfocitária/fisiologia , Animais , Células Produtoras de Anticorpos , Ciclo Celular , Divisão Celular , Cromatina , Cromossomos , Replicação do DNA , Epigenômica , Fase G1/genética , Regulação da Expressão Gênica , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Mitose , Plasmócitos
4.
Front Immunol ; 9: 2053, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30250473

RESUMO

In response to external stimuli, naïve B cells proliferate and take on a range of fates important for immunity. How their fate is determined is a topic of much recent research, with candidates including asymmetric cell division, lineage priming, stochastic assignment, and microenvironment instruction. Here we manipulate the generation of plasmablasts from B lymphocytes in vitro by varying CD40 stimulation strength to determine its influence on potential sources of fate control. Using long-term live cell imaging, we directly measure times to differentiate, divide, and die of hundreds of pairs of sibling cells. These data reveal that while the allocation of fates is significantly altered by signal strength, the proportion of siblings identified with asymmetric fates is unchanged. In contrast, we find that plasmablast generation is enhanced by slowing times to divide, which is consistent with a hypothesis of competing timed stochastic fate outcomes. We conclude that this mechanistically simple source of alternative fate regulation is important, and that useful quantitative models of signal integration can be developed based on its principles.


Assuntos
Linfócitos B/fisiologia , Plasmócitos/fisiologia , Células Precursoras de Linfócitos B/fisiologia , Animais , Relógios Biológicos , Antígenos CD40/metabolismo , Diferenciação Celular , Divisão Celular , Linhagem da Célula , Células Cultivadas , Feminino , Imunização , Ativação Linfocitária , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Fator 1 de Ligação ao Domínio I Regulador Positivo/genética , Processos Estocásticos
5.
PLoS One ; 11(1): e0146227, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26742110

RESUMO

Adaptive immune responses are complex dynamic processes whereby B and T cells undergo division and differentiation triggered by pathogenic stimuli. Deregulation of the response can lead to severe consequences for the host organism ranging from immune deficiencies to autoimmunity. Tracking cell division and differentiation by flow cytometry using fluorescent probes is a major method for measuring progression of lymphocyte responses, both in vitro and in vivo. In turn, mathematical modeling of cell numbers derived from such measurements has led to significant biological discoveries, and plays an increasingly important role in lymphocyte research. Fitting an appropriate parameterized model to such data is the goal of these studies but significant challenges are presented by the variability in measurements. This variation results from the sum of experimental noise and intrinsic probabilistic differences in cells and is difficult to characterize analytically. Current model fitting methods adopt different simplifying assumptions to describe the distribution of such measurements and these assumptions have not been tested directly. To help inform the choice and application of appropriate methods of model fitting to such data we studied the errors associated with flow cytometry measurements from a wide variety of experiments. We found that the mean and variance of the noise were related by a power law with an exponent between 1.3 and 1.8 for different datasets. This violated the assumptions inherent to commonly used least squares, linear variance scaling and log-transformation based methods. As a result of these findings we propose a new measurement model that we justify both theoretically, from the maximum entropy standpoint, and empirically using collected data. Our evaluation suggests that the new model can be reliably used for model fitting across a variety of conditions. Our work provides a foundation for modeling measurements in flow cytometry experiments thus facilitating progress in quantitative studies of lymphocyte responses.


Assuntos
Linfócitos B/citologia , Linfócitos T CD8-Positivos/citologia , Citometria de Fluxo/estatística & dados numéricos , Modelos Estatísticos , Animais , Linfócitos B/imunologia , Linfócitos T CD8-Positivos/imunologia , Diferenciação Celular/imunologia , Divisão Celular/imunologia , Entropia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Distribuições Estatísticas , Processos Estocásticos
6.
PLoS One ; 9(1): e83251, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24404133

RESUMO

Interest in cell heterogeneity and differentiation has recently led to increased use of time-lapse microscopy. Previous studies have shown that cell fate may be determined well in advance of the event. We used a mixture of automation and manual review of time-lapse live cell imaging to track the positions, contours, divisions, deaths and lineage of 44 B-lymphocyte founders and their 631 progeny in vitro over a period of 108 hours. Using this data to train a Support Vector Machine classifier, we were retrospectively able to predict the fates of individual lymphocytes with more than 90% accuracy, using only time-lapse imaging captured prior to mitosis or death of 90% of all cells. The motivation for this paper is to explore the impact of labour-efficient assistive software tools that allow larger and more ambitious live-cell time-lapse microscopy studies. After training on this data, we show that machine learning methods can be used for realtime prediction of individual cell fates. These techniques could lead to realtime cell culture segregation for purposes such as phenotype screening. We were able to produce a large volume of data with less effort than previously reported, due to the image processing, computer vision, tracking and human-computer interaction tools used. We describe the workflow of the software-assisted experiments and the graphical interfaces that were needed. To validate our results we used our methods to reproduce a variety of published data about lymphocyte populations and behaviour. We also make all our data publicly available, including a large quantity of lymphocyte spatio-temporal dynamics and related lineage information.


Assuntos
Linfócitos/fisiologia , Máquina de Vetores de Suporte , Imagem com Lapso de Tempo , Rastreamento de Células , Humanos , Processamento de Imagem Assistida por Computador , Microscopia de Fluorescência , Reprodutibilidade dos Testes
7.
Science ; 335(6066): 338-41, 2012 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-22223740

RESUMO

In response to stimulation, B lymphocytes pursue a large number of distinct fates important for immune regulation. Whether each cell's fate is determined by external direction, internal stochastic processes, or directed asymmetric division is unknown. Measurement of times to isotype switch, to develop into a plasmablast, and to divide or to die for thousands of cells indicated that each fate is pursued autonomously and stochastically. As a consequence of competition between these processes, censorship of alternative outcomes predicts intricate correlations that are observed in the data. Stochastic competition can explain how the allocation of a proportion of B cells to each cell fate is achieved. The B cell may exemplify how other complex cell differentiation systems are controlled.


Assuntos
Linfócitos B/citologia , Linfócitos B/imunologia , Ativação Linfocitária , Animais , Morte Celular , Diferenciação Celular , Divisão Celular , Feminino , Switching de Imunoglobulina , Camundongos , Modelos Imunológicos , Processos Estocásticos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA