Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 71
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Cytometry A ; 2024 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-38842356

RESUMO

Optofluidic time-stretch imaging flow cytometry (OTS-IFC) provides a suitable solution for high-precision cell analysis and high-sensitivity detection of rare cells due to its high-throughput and continuous image acquisition. However, transferring and storing continuous big data streams remains a challenge. In this study, we designed a high-speed streaming storage strategy to store OTS-IFC data in real-time, overcoming the imbalance between the fast generation speed in the data acquisition and processing subsystem and the comparatively slower storage speed in the transmission and storage subsystem. This strategy, utilizing an asynchronous buffer structure built on the producer-consumer model, optimizes memory usage for enhanced data throughput and stability. We evaluated the storage performance of the high-speed streaming storage strategy in ultra-large-scale blood cell imaging on a common commercial device. The experimental results show that it can provide a continuous data throughput of up to 5891 MB/s.

2.
Blood ; 139(3): 424-438, 2022 01 20.
Artigo em Inglês | MEDLINE | ID: mdl-34482400

RESUMO

Posttranscriptional regulation has emerged as a driver for leukemia development and an avenue for therapeutic targeting. Among posttranscriptional processes, alternative polyadenylation (APA) is globally dysregulated across cancer types. However, limited studies have focused on the prevalence and role of APA in myeloid leukemia. Furthermore, it is poorly understood how altered poly(A) site usage of individual genes contributes to malignancy or whether targeting global APA patterns might alter oncogenic potential. In this study, we examined global APA dysregulation in patients with acute myeloid leukemia (AML) by performing 3' region extraction and deep sequencing (3'READS) on a subset of AML patient samples along with healthy hematopoietic stem and progenitor cells (HSPCs) and by analyzing publicly available data from a broad AML patient cohort. We show that patient cells exhibit global 3' untranslated region (UTR) shortening and coding sequence lengthening due to differences in poly(A) site (PAS) usage. Among APA regulators, expression of FIP1L1, one of the core cleavage and polyadenylation factors, correlated with the degree of APA dysregulation in our 3'READS data set. Targeting global APA by FIP1L1 knockdown reversed the global trends seen in patients. Importantly, FIP1L1 knockdown induced differentiation of t(8;21) cells by promoting 3'UTR lengthening and downregulation of the fusion oncoprotein AML1-ETO. In non-t(8;21) cells, FIP1L1 knockdown also promoted differentiation by attenuating mechanistic target of rapamycin complex 1 (mTORC1) signaling and reducing MYC protein levels. Our study provides mechanistic insights into the role of APA in AML pathogenesis and indicates that targeting global APA patterns can overcome the differentiation block in patients with AML.


Assuntos
Regulação Leucêmica da Expressão Gênica , Leucemia Mieloide Aguda/genética , Poliadenilação , Regiões 3' não Traduzidas , Células Cultivadas , Células-Tronco Hematopoéticas/metabolismo , Humanos , Células Tumorais Cultivadas , Fatores de Poliadenilação e Clivagem de mRNA/genética
3.
Opt Lett ; 47(18): 4822-4825, 2022 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-36107099

RESUMO

Sequentially timed all-optical mapping photography (STAMP) is an effective tool for observing ultrafast and non-repetitive events. In the classical design of STAMP, the spatial resolution of the acquired images is different in two directions, severely limiting the scalability of STAMP. Here, by introducing an asymmetric optical design, we make the slicing mirror locate in the hybrid plane of the system, i.e., the image plane in the direction of the short edge, while the Fourier plane is in the direction of the long edge. This avoids the loss of the high-frequency components of the images and hence offers the possibility to further extend the frame number of the system.

4.
Mol Ther ; 27(5): 999-1016, 2019 05 08.
Artigo em Inglês | MEDLINE | ID: mdl-30852139

RESUMO

Excessive or inappropriate inflammatory responses can cause serious and even fatal diseases. The CCAAT/enhancer-binding protein alpha (CEBPA) gene encodes C/EBPα, a transcription factor that plays a fundamental role in controlling maturation of the myeloid lineage and is also expressed during the late phase of inflammatory responses when signs of inflammation are decreasing. MTL-CEBPA, a small activating RNA targeting for upregulation of C/EBPα, is currently being evaluated in a phase 1b trial for treatment of hepatocellular carcinoma. After dosing, subjects had reduced levels of pro-inflammatory cytokines, and we therefore hypothesized that MTL-CEBPA has anti-inflammatory potential. The current study was conducted to determine the effects of C/EBPα saRNA - CEBPA-51 - on inflammation in vitro and in vivo after endotoxin challenge. CEBPA-51 led to increased expression of the C/EBPα gene and inhibition of pro-inflammatory cytokines in THP-1 monocytes previously stimulated by E. coli-derived lipopolysaccharide (LPS). Treatment with MTL-CEBPA in an LPS-challenged humanized mouse model upregulated C/EBPα mRNA, increased neutrophils, and attenuated production of several key pro-inflammatory cytokines, including TNF-α, IL-6, IL-1ß, and IFN-γ. In addition, a Luminex analysis of mouse serum revealed that MTL-CEBPA reduced pro-inflammatory cytokines and increased the anti-inflammatory cytokine IL-10. Collectively, the data support further investigation of MTL-CEBPA in acute and chronic inflammatory diseases where this mechanism has pathogenic importance.


Assuntos
Proteínas Estimuladoras de Ligação a CCAAT/genética , Inflamação/terapia , Monócitos/efeitos dos fármacos , RNA/genética , Animais , Anti-Inflamatórios/farmacologia , Proteínas Estimuladoras de Ligação a CCAAT/antagonistas & inibidores , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , Inflamação/induzido quimicamente , Inflamação/genética , Inflamação/patologia , Interleucina-10/genética , Interleucina-1beta/genética , Lipopolissacarídeos/toxicidade , Camundongos , Monócitos/metabolismo , RNA/farmacologia , RNA Mensageiro/genética , Fator de Necrose Tumoral alfa/genética
5.
J Virol ; 92(7)2018 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-29343582

RESUMO

Although current combinatorial antiretroviral therapy (cART) is therapeutically effective in the majority of HIV patients, interruption of therapy can cause a rapid rebound in viremia, demonstrating the existence of a stable reservoir of latently infected cells. HIV latency is therefore considered a primary barrier to HIV eradication. Identifying, quantifying, and purging the HIV reservoir is crucial to effectively curing patients and relieving them from the lifelong requirement for therapy. Latently infected transformed cell models have been used to investigate HIV latency; however, these models cannot accurately represent the quiescent cellular environment of primary latently infected cells in vivo For this reason, in vivo humanized murine models have been developed for screening antiviral agents, identifying latently infected T cells, and establishing treatment approaches for HIV research. Such models include humanized bone marrow/liver/thymus mice and SCID-hu-thy/liv mice, which are repopulated with human immune cells and implanted human tissues through laborious surgical manipulation. However, no one has utilized the human hematopoietic stem cell-engrafted NOD/SCID/IL2rγnull (NSG) model (hu-NSG) for this purpose. Therefore, in the present study, we used the HIV-infected hu-NSG mouse to recapitulate the key aspects of HIV infection and pathogenesis in vivo Moreover, we evaluated the ability of HIV-infected human cells isolated from HIV-infected hu-NSG mice on suppressive cART to act as a latent HIV reservoir. Our results demonstrate that the hu-NSG model is an effective surgery-free in vivo system in which to efficiently evaluate HIV replication, antiretroviral therapy, latency and persistence, and eradication interventions.IMPORTANCE HIV can establish a stably integrated, nonproductive state of infection at the level of individual cells, known as HIV latency, which is considered a primary barrier to curing HIV. A complete understanding of the establishment and role of HIV latency in vivo would greatly enhance attempts to develop novel HIV purging strategies. An ideal animal model for this purpose should be easy to work with, should have a shortened disease course so that efficacy testing can be completed in a reasonable time, and should have immune correlates that are easily translatable to humans. We therefore describe a novel application of the hematopoietic stem cell-transplanted humanized NSG model for dynamically testing antiretroviral treatment, supporting HIV infection, establishing HIV latency in vivo The hu-NSG model could be a facile alternative to humanized bone marrow/liver/thymus or SCID-hu-thy/liv mice in which laborious surgical manipulation and time-consuming human cell reconstitution is required.


Assuntos
Antirretrovirais/farmacologia , Modelos Animais de Doenças , Infecções por HIV/tratamento farmacológico , HIV-1/fisiologia , Latência Viral/efeitos dos fármacos , Replicação Viral/efeitos dos fármacos , Administração Oral , Animais , Infecções por HIV/metabolismo , Infecções por HIV/patologia , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCID
6.
J Gen Virol ; 98(7): 1600-1610, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-28708049

RESUMO

Respiratory syncytial virus (RSV) is the leading cause of lower respiratory tract infection (LRTI) in children from infancy up to early childhood. Recently, we demonstrated that RSV infection alters cellular small non-coding RNA (sncRNA) expression, most notably the tRNA-derived RNA fragments (tRFs). However, the functions of the tRFs in virus-host interaction are largely unknown. Herein, we examined the role of three RSV-induced tRFs derived from the 5-end of mature tRNAs decoding GlyCCC, LysCTT and CysGCA (named tRF5-GlyCCC, tRF5-LysCTT and tRF5-CysGCA, respectively) in controlling RSV replication. We found that tRF5-GlyCCC and tRF5-LysCTT, but not tRF5-CysGCA, promote RSV replication, demonstrating the functional specificity of tRFs. The associated molecular mechanisms underlying the functions of tRF5-GlyCCC and tRF5-LysCTT were also investigated. Regulating the expression and/or activity of these tRFs may provide new insights into preventive and therapeutic strategies for RSV infection. The study also accumulated data for future development of a tRF targeting algorithm.


Assuntos
Regulação da Expressão Gênica/genética , Pequeno RNA não Traduzido/genética , RNA de Transferência/genética , Vírus Sincicial Respiratório Humano/genética , Replicação Viral/genética , Células A549 , Sequência de Bases , Linhagem Celular , Criança , Pré-Escolar , Células HEK293 , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Lactente , Infecções por Vírus Respiratório Sincicial/virologia , Análise de Sequência de RNA
7.
Small ; 12(27): 3667-76, 2016 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-27244195

RESUMO

Self-assembly is a fundamental concept and a powerful approach in molecular science. However, creating functional materials with the desired properties through self-assembly remains challenging. In this work, through a combination of experimental and computational approaches, the self-assembly of small amphiphilic dendrons into nanosized supramolecular dendrimer micelles with a degree of structural definition similar to traditional covalent high-generation dendrimers is reported. It is demonstrated that, with the optimal balance of hydrophobicity and hydrophilicity, one of the self-assembled nanomicellar systems, totally devoid of toxic side effects, is able to deliver small interfering RNA and achieve effective gene silencing both in cells - including the highly refractory human hematopoietic CD34(+) stem cells - and in vivo, thus paving the way for future biomedical implementation. This work presents a case study of the concept of generating functional supramolecular dendrimers via self-assembly. The ability of carefully designed and gauged building blocks to assemble into supramolecular structures opens new perspectives on the design of self-assembling nanosystems for complex and functional applications.


Assuntos
Dendrímeros/química , Inativação Gênica/fisiologia , RNA Interferente Pequeno/química , Animais , Linhagem Celular Tumoral , Humanos , Interações Hidrofóbicas e Hidrofílicas , Masculino , Camundongos , Camundongos Nus , Micelas , Estrutura Molecular , Neoplasias da Próstata/genética , Neoplasias da Próstata/terapia , RNA Interferente Pequeno/administração & dosagem , RNA Interferente Pequeno/genética , Ensaios Antitumorais Modelo de Xenoenxerto
8.
Mol Ther ; 23(10): 1622-9, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26156244

RESUMO

Target identification is highly instructive in defining the biological roles of microRNAs. However, little is known about other small noncoding RNAs; for example, tRNA-derived RNA Fragments (tRFs). Some tRFs exhibit a gene-silencing mechanism distinctly different from that of typical microRNAs. We recently demonstrated that a respiratory syncytial virus (RSV)-induced tRF, called tRF5-GluCTC, promotes RSV replication. RSV is the single most important cause of lower respiratory tract infection in children. By using biochemical screening and bioinformatics analyses, we have identified apolipoprotein E receptor 2 (APOER2) as a target of tRF5-GluCTC. The 3'-portion of tRF5-GluCTC recognizes a target site in the 3'-untranslated region of APOER2 and suppresses its expression. We have also discovered that APOER2 is an anti-RSV protein whose suppression by tRF5-GluCTC promotes RSV replication. Our report represents the first identification of a natural target of a tRF and illustrates how a virus utilizes a host tRF to control a host gene to favor its replication.


Assuntos
Inativação Gênica , Interferência de RNA , Sequência de Bases , Sítios de Ligação , Linhagem Celular , Regulação da Expressão Gênica , Humanos , Proteínas Relacionadas a Receptor de LDL/química , Proteínas Relacionadas a Receptor de LDL/genética , Proteínas Relacionadas a Receptor de LDL/metabolismo , Ligação Proteica , Pequeno RNA não Traduzido/química , Pequeno RNA não Traduzido/genética , RNA de Transferência/química , RNA de Transferência/genética , Vírus Sincicial Respiratório Humano/fisiologia , Transfecção , Proteínas Estruturais Virais/genética , Proteínas Estruturais Virais/metabolismo , Replicação Viral/genética
9.
Cancer Immunol Immunother ; 64(6): 737-44, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25795133

RESUMO

This study investigated whether TNF-α, Toll-like receptors (TLRs) 7/8 agonist resiquimod (R848), the TLR4 agonist lipopolysaccharide (LPS) and their combinations can enhance autologous AML-reactive T cell generation in an in vitro culture. AML peripheral blood or bone marrow mononuclear cells were cultured in medium supplemented with GM-CSF/IL-4 to induce dendritic cell (DC) differentiation of AML blasts (AML-DC). The impact of TNF-α, LPS, R848 and their combinations on AML-DC cultures was analyzed. Significantly enhanced CD80, CD40, CD83, CD54, HLA-DR and CD86 expression of AML cells was observed by addition of TNF-α, LPS, R848 alone or combinations. Induced CD80 expression of AML cells was significantly higher through the combination of TNF-α, LPS and R848 (T + L + R) than that by T alone. CTL induced from T + L + R, T + R, T + L, L + R and R, but not T, L alone stimulated cultures showed significantly higher IFN-γ release than the medium control in response to autologous AML cells. IFN-γ release by T + L + R was significantly higher than T or L alone, and T + R was significantly higher than T alone. CTL generated from T + L + R, T + L, T + R, L + R and L alone exerted significantly higher AML cell killing than medium control. AML cell killing by T + L + R and T + R was significantly higher than T or R alone. These results indicate that the combination of T + L + R induces a significantly enhanced antigen presentation effect of AML-DC. We speculate that the complementary effects of reagent combinations may better address the heterogeneity of responses to any single agent in AML cells from different patients.


Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Imidazóis/farmacologia , Leucemia Mieloide Aguda/tratamento farmacológico , Leucemia Mieloide Aguda/imunologia , Lipopolissacarídeos/farmacologia , Linfócitos T Citotóxicos/imunologia , Receptores Toll-Like/agonistas , Células Dendríticas/imunologia , Humanos , Imidazóis/administração & dosagem , Interferon gama/imunologia , Lipopolissacarídeos/administração & dosagem , Linfócitos T Citotóxicos/efeitos dos fármacos , Receptores Toll-Like/imunologia , Células Tumorais Cultivadas
10.
Nucleic Acids Res ; 41(7): 4266-83, 2013 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-23470998

RESUMO

The B-cell-activating factor (BAFF)-receptor (BAFF-R) is restrictedly expressed on B-cells and is often overexpressed in B-cell malignancies, such as non-Hodgkin's lymphoma. On binding to its ligand BAFF, proliferation and cell survival are increased, enabling cancer cells to proliferate faster than normal B-cells. Nucleic acid aptamers can bind to target ligands with high specificity and affinity and may offer therapeutic advantages over antibody-based approaches. In this study, we isolated several 2'-F-modified RNA aptamers targeting the B-cell-specific BAFF-R with nanomolar affinity using in vitro SELEX technology. The aptamers efficiently bound to BAFF-R on the surface of B-cells, blocked BAFF-mediated B-cell proliferation and were internalized into B-cells. Furthermore, chimeric molecules between the BAFF-R aptamer and small interfering RNAs (siRNAs) were specifically delivered to BAFF-R expressing cells with a similar efficiency as the aptamer alone. We demonstrate that a signal transducer and activator of transcription 3 (STAT3) siRNA delivered by the BAFF-R aptamer was processed by Dicer and efficiently reduced levels of target mRNA and protein in Jeko-1 and Z138 human B-cell lines. Collectively, our results demonstrate that the dual-functional BAFF-R aptamer-siRNA conjugates are able to deliver siRNAs and block ligand mediated processes, suggesting it might be a promising combinatorial therapeutic agent for B-cell malignancies.


Assuntos
Aptâmeros de Nucleotídeos/farmacologia , Fator Ativador de Células B/antagonistas & inibidores , Receptor do Fator Ativador de Células B/metabolismo , RNA Interferente Pequeno/administração & dosagem , Aptâmeros de Nucleotídeos/química , Aptâmeros de Nucleotídeos/metabolismo , Linhagem Celular , Proliferação de Células , Humanos , Selectina L/genética , Selectina L/metabolismo , Ligantes , Interferência de RNA , Fator de Transcrição STAT3/genética , Fator de Transcrição STAT3/metabolismo
11.
Mol Ther ; 21(1): 192-200, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23164935

RESUMO

One of the most formidable impediments to clinical translation of RNA interference (RNAi) is safe and effective delivery of the siRNAs to the desired target tissue at therapeutic doses. We previously described in vivo cell type-specific delivery of anti-HIV small-interfering RNAs (siRNAs) through covalent conjugation to an anti-gp120 aptamer. In order to improve the utility of aptamers as siRNA delivery vehicles, we chemically synthesized the gp120 aptamer with a 3' 7-carbon linker (7C3), which in turn is attached to a 16-nucleotide 2' OMe/2' Fl GC-rich bridge sequence. This bridge facilitates the noncovalent binding and interchange of various siRNAs with the same aptamer. We show here that this aptamer-bridge-construct complexed with three different Dicer substrate siRNAs (DsiRNAs) results in effective delivery of the cocktail of DsiRNAs in vivo, resulting in knockdown of target mRNAs and potent inhibition of HIV-1 replication. Following cessation of the aptamer-siRNA cocktail treatment, HIV levels rebounded facilitating a follow-up treatment with the aptamer cocktail of DsiRNAs. This follow-up injection resulted in complete suppression of HIV-1 viral loads that extended several weeks beyond the final injection. Collectively, these data demonstrate a facile, targeted approach for combinatorial delivery of antiviral and host DsiRNAs for HIV-1 therapy in vivo.


Assuntos
Aptâmeros de Nucleotídeos/genética , HIV-1/genética , RNA Interferente Pequeno/genética , Animais , Sequência de Bases , Linfócitos T CD4-Positivos/imunologia , Proteína gp120 do Envelope de HIV/genética , Depleção Linfocítica , Camundongos , Camundongos Knockout
12.
Angew Chem Int Ed Engl ; 53(44): 11822-7, 2014 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-25219970

RESUMO

siRNA delivery remains a major challenge in RNAi-based therapy. Here, we report for the first time that an amphiphilic dendrimer is able to self-assemble into adaptive supramolecular assemblies upon interaction with siRNA, and effectively delivers siRNAs to various cell lines, including human primary and stem cells, thereby outperforming the currently available nonviral vectors. In addition, this amphiphilic dendrimer is able to harness the advantageous features of both polymer and lipid vectors and hence promotes effective siRNA delivery. Our study demonstrates for the first time that dendrimer-based adaptive supramolecular assemblies represent novel and versatile means for functional siRNA delivery, heralding a new age of dendrimer-based self-assembled drug delivery in biomedical applications.


Assuntos
Dendrímeros/química , Inativação Gênica/imunologia , RNA Interferente Pequeno/imunologia , Humanos
13.
Methods Mol Biol ; 2666: 317-346, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37166674

RESUMO

Live cell-based SELEX (Systematic Evolution of Ligand EXponential enrichment) is a promising approach for identifying aptamers that can selectively bind to a cell-surface receptor or recognize a particular target cell population. In particular, it offers a facile selection strategy for some special cell-surface proteins that are originally glycosylated or heavily posttranslationally modified and are unavailable in their native/active conformation after in vitro expression and purification. In this chapter, we describe a generalized procedure for evolution of cell type-specific RNA aptamers targeting a cell membrane bound target by combining the live cell-based SELEX strategy with high-throughput sequencing (HTS) and bioinformatics analysis.


Assuntos
Aptâmeros de Nucleotídeos , Aptâmeros de Nucleotídeos/genética , Aptâmeros de Nucleotídeos/metabolismo , Técnica de Seleção de Aptâmeros/métodos , Biologia Computacional , Ligantes , Sequenciamento de Nucleotídeos em Larga Escala/métodos
14.
Am J Trop Med Hyg ; 109(1): 115-122, 2023 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-37253447

RESUMO

Mayaro virus (MAYV) is an arthropod-borne virus (arbovirus) belonging to the family Togaviridae, genus Alphavirus. In recent years, the geographic distribution of MAYV may have expanded north from South and Central America into the Caribbean Islands. Although Haemagogus janthinomys is considered the main vector for MAYV, the virus has also been isolated from other mosquitoes, including Aedes aegypti, a widespread species that serves as the main vector for highly epidemic viruses. Given the possible expansion and outbreaks of MAYV in Latin America, it is possible that MAYV might be adapting to be efficiently transmitted by urban vectors. Therefore, to investigate this possibility, we evaluated the vector competence of Ae. aegypti and Ae. albopictus mosquitoes to transmit MAYV isolated during a year of low or high MAYV transmission. Adult Ae. aegypti and Ae. albopictus were orally infected with the MAYV strains, and the infection, dissemination, and transmission rates were calculated to evaluate their vector competence. Overall, we found higher infection, dissemination, and transmission rates in both Ae. aegypti and Ae. albopictus mosquitoes infected with the strain isolated during a MAYV outbreak, whereas low/no transmission was detected with the strain isolated during a year of low MAYV activity. Our results confirmed that both Ae. aegypti and Ae. albopictus are competent vectors for the emergent MAYV. Our data suggest that strains isolated during MAYV outbreaks might be better fit to infect and be transmitted by urban vectors, raising serious concern about the epidemic potential of MAYV.


Assuntos
Aedes , Infecções por Alphavirus , Alphavirus , Humanos , Animais , Mosquitos Vetores , Infecções por Alphavirus/epidemiologia , Surtos de Doenças
15.
Lab Chip ; 23(16): 3571-3580, 2023 08 08.
Artigo em Inglês | MEDLINE | ID: mdl-37401791

RESUMO

Imaging flow cytometry (IFC) is a powerful tool for cell detection and analysis due to its high throughput and compatibility in image acquisition. Optical time-stretch (OTS) imaging is considered as one of the most promising imaging techniques for IFC because it can realize cell imaging at a flow speed of around 60 m s-1. However, existing PDMS-based microchannels cannot function at flow velocities higher than 10 m s-1; thus the capability of OTS-based IFC is significantly limited. To overcome the velocity barrier for PDMS-based microchannels, we proposed an optimized design of PDMS-based microchannels with reduced hydraulic resistance and 3D hydrodynamic focusing capability, which can drive fluids at an ultra-high flow velocity (of up to 40 m s-1) by using common syringe pumps. To verify the feasibility of our design, we fabricated and installed the microchannel in an OTS IFC system. The experimental results first proved that the proposed microchannel can support a stable flow velocity of up to 40 m s-1 without any leakage or damage. Then, we demonstrated that the OTS IFC is capable of imaging cells at a velocity of up to 40 m s-1 with good quality. To the best of our knowledge, it is the first time that IFC has achieved such a high flow velocity just by using a PDMS-glass chip. Moreover, high velocity can enhance the focusing of cells on the optical focal plane, increasing the number of detected cells and the throughput. This work provides a promising solution for IFC to fully release its capability of advanced imaging techniques by operating at an extremely high screening throughput.


Assuntos
Dispositivos Lab-On-A-Chip , Imagem Óptica , Citometria de Fluxo/métodos , Hidrodinâmica
16.
Anal Chem ; 84(12): 5365-71, 2012 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-22624874

RESUMO

Many analytical techniques benefit greatly from the use of affinity reagent pairs, wherein each reagent recognizes a discrete binding site on a target. For example, antibody pairs have been widely used to dramatically increase the specificity of enzyme linked immunosorbent assays (ELISA). Nucleic acid-based aptamers offer many advantageous features relative to protein-based affinity reagents, including well-established chemical synthesis, thermostability, and low production cost. However, the generation of suitable aptamer pairs has posed a significant challenge, and few such pairs have been reported to date. To address this important challenge, we present multivalent aptamer isolation systematic evolution of ligands by exponential enrichment (MAI-SELEX), a technique designed for the efficient selection of aptamer pairs. In contrast to conventional selection methods, our method utilizes two selection modules to generate separate aptamer pools that recognize distinct binding sites on a single target. Using MAI-SELEX, we have isolated two groups of 2'-fluoro-modified RNA aptamers that specifically recognize the αV or ß3 subunits of integrin αVß3. These aptamers exhibit low nanomolar affinities for their targets, with minimal cross-reactivity to other closely related integrin homologues. Moreover, we show that these aptamer pairs do not interfere with each other's binding and effectively detect the target even in complex mixtures such as undiluted serum.


Assuntos
Aptâmeros de Nucleotídeos/metabolismo , Integrina alfaVbeta3/metabolismo , Técnica de Seleção de Aptâmeros/métodos , Animais , Sítios de Ligação , Bovinos , Integrina alfaVbeta3/química , Ligantes , Subunidades Proteicas/química , Subunidades Proteicas/metabolismo , Homologia de Sequência de Aminoácidos , Especificidade por Substrato
17.
Methods ; 54(2): 284-94, 2011 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-21256218

RESUMO

The potent ability of small interfering RNA (siRNA) to inhibit the expression of complementary RNA transcripts is being exploited as a new class of therapeutics for diseases including HIV. However, efficient delivery of siRNAs remains a key obstacle to successful application. A targeted intracellular delivery approach for siRNAs to specific cell types is highly desirable. HIV-1 infection is initiated by the interactions between viral glycoprotein gp120 and cell surface receptor CD4, leading to fusion of the viral membrane with the target cell membrane. Once HIV infects a cell it produces gp120 which is displayed at the cell surface. We previously described a novel dual inhibitory anti-gp120 aptamer-siRNA chimera in which both the aptamer and the siRNA portions have potent anti-HIV activities. We also demonstrated that gp120 can be used for aptamer mediated delivery of anti-HIV siRNAs. Here we report the design, construction and evaluation of chimerical RNA nanoparticles containing a HIV gp120-binding aptamer escorted by the pRNA of bacteriophage phi29 DNA-packaging motor. We demonstrate that pRNA-aptamer chimeras specifically bind to and are internalized into cells expressing HIV gp120. Moreover, the pRNA-aptamer chimeras alone also provide HIV inhibitory function by blocking viral infectivity. The Ab' pRNA-siRNA chimera with 2'-F modified pyrimidines in the sense strand not only improved the RNA stability in serum, but also was functionally processed by Dicer, resulting in specific target gene silencing. Therefore, this dual functional pRNA-aptamer not only represents a potential HIV-1 inhibitor, but also provides a cell-type specific siRNA delivery vehicle, showing promise for systemic anti-HIV therapy.


Assuntos
Aptâmeros de Nucleotídeos/genética , Fagos Bacilares/genética , Proteína gp120 do Envelope de HIV/genética , HIV-1/genética , Nanopartículas , RNA Viral/genética , Animais , Aptâmeros de Nucleotídeos/metabolismo , Células CHO , Cricetinae , Cricetulus , Células HEK293 , Proteína gp120 do Envelope de HIV/metabolismo , Proteína gp160 do Envelope de HIV/metabolismo , Humanos , Leucócitos Mononucleares/virologia , Interferência de RNA , Estabilidade de RNA , RNA Interferente Pequeno/administração & dosagem , RNA Interferente Pequeno/genética , RNA Viral/metabolismo , Ribonuclease III/metabolismo
18.
Mol Ther ; 19(12): 2228-38, 2011 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-21952167

RESUMO

We evaluated the in vivo efficacy of structurally flexible, cationic PAMAM dendrimers as a small interfering RNA (siRNA) delivery system in a Rag2(-)/-γc-/- (RAG-hu) humanized mouse model for HIV-1 infection. HIV-infected humanized Rag2-/-γc-/- mice (RAG-hu) were injected intravenously (i.v.) with dendrimer-siRNA nanoparticles consisting of a cocktail of dicer substrate siRNAs (dsiRNAs) targeting both viral and cellular transcripts. We report in this study that the dendrimer-dsiRNA treatment suppressed HIV-1 infection by several orders of magnitude and protected against viral induced CD4(+) T-cell depletion. We also demonstrated that follow-up injections of the dendrimer-cocktailed dsiRNAs following viral rebound resulted in complete inhibition of HIV-1 titers. Biodistribution studies demonstrate that the dendrimer-dsiRNAs preferentially accumulate in peripheral blood mononuclear cells (PBMCs) and liver and do not exhibit any discernable toxicity. These data demonstrate for the first time efficacious combinatorial delivery of anti-host and -viral siRNAs for HIV-1 treatment in vivo. The dendrimer delivery approach therefore represents a promising method for systemic delivery of combinations of siRNAs for treatment of HIV-1 infection.


Assuntos
Linfócitos T CD4-Positivos/virologia , Infecções por HIV/prevenção & controle , Infecções por HIV/virologia , HIV-1/fisiologia , Nanopartículas/administração & dosagem , RNA Interferente Pequeno/administração & dosagem , Animais , Linfócitos T CD4-Positivos/imunologia , RNA Helicases DEAD-box/metabolismo , Proteínas de Ligação a DNA/fisiologia , Dendrímeros , Modelos Animais de Doenças , Citometria de Fluxo , Infecções por HIV/genética , Humanos , Subunidade gama Comum de Receptores de Interleucina/fisiologia , Leucócitos Mononucleares/citologia , Leucócitos Mononucleares/metabolismo , Leucócitos Mononucleares/virologia , Fígado/citologia , Fígado/metabolismo , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Knockout , RNA Interferente Pequeno/genética , RNA Viral/genética , Ribonuclease III/metabolismo , Linfócitos T Auxiliares-Indutores/imunologia , Linfócitos T Auxiliares-Indutores/virologia , Carga Viral , Viremia/genética , Viremia/prevenção & controle , Viremia/virologia , Produtos do Gene rev do Vírus da Imunodeficiência Humana/antagonistas & inibidores , Produtos do Gene rev do Vírus da Imunodeficiência Humana/genética , Produtos do Gene rev do Vírus da Imunodeficiência Humana/metabolismo , Produtos do Gene tat do Vírus da Imunodeficiência Humana/antagonistas & inibidores , Produtos do Gene tat do Vírus da Imunodeficiência Humana/genética , Produtos do Gene tat do Vírus da Imunodeficiência Humana/metabolismo
19.
Biol Blood Marrow Transplant ; 17(5): 682-92, 2011 May.
Artigo em Inglês | MEDLINE | ID: mdl-20713164

RESUMO

Cytotoxic T lymphocyte-associated antigen 4 (CTLA-4) is a key negative regulator of T cell activation and proliferation. Ipilimumab is a human monoclonal antibody that specifically blocks the binding of CTLA-4 to its ligand. To test the hypothesis that blockade of CTLA-4 by ipilimumab could augment graft-versus-malignancy (GVM) effects without a significant impact on graft-versus-host disease (GVHD), we conducted a phase I clinical trial of ipilimumab infusion in patients with relapsed malignancy following allogeneic hematopoietic stem cell transplantation (allo-HSCT). Here, we report the analysis of peripheral blood T lymphocyte reconstitution, T regulatory cell (Treg) expression, and T cell activation markers after a single dose of ipilimumab in 29 patients. Peripheral blood samples were collected from all patients before and after ipilimumab infusion. Lymphocyte immunophenotyes, including levels of CD4(+)CD25(high) cells and T cell activation markers, were analyzed in all cases. Levels of CD4(+)CD25(high)Foxp3(+) cells and intracellular CTLA-4 in CD4(+) T cells also were evaluated in the last 11 cases. We found lower baseline levels of CD4(+) and CD45RO(+) T cells in patients compared with normal controls. More than 50% of the patients had abnormally low lymphocyte counts (CD4 or/and CD8 T cells), and some had no circulating B lymphocytes. The percentages of both CD4(+)CD25(high) and CD4(+)CD25(high)Foxp3(+) T cells were significantly higher in patients before ipilimumab infusion than in healthy donors. Twenty of 29 patients exhibited an elevated level of CD4(+)CD25(low) activated T cells at baseline, compared with only 3 of 26 healthy donors. Both CD4(+) and CD8(+) T lymphocyte counts were significantly increased after ipilimumab infusion. There was no consistent change in absolute lymphocyte count or in the number of T cells expressing the activation marker CD69. However, increases in CD4(+)CD25(low) T cells were seen in 20 of 29 patients and increases in CD4(+)HLA-DR(+) T cells were seen in the last 10 patients in the first 60 days after ipilimumab infusion. Although the percentages of both CD4(+)CD25(high) and CD4(+)CD25(high)Foxp3(+) T cells decreased significantly during the observation period, the absolute cell counts did not change. Intracellular CTLA-4 expression in CD4(+)CD25(lo/-) T cells increased significantly after ipilimumab infusion. We conclude that CTLA-4 blockade by a single infusion of ipilimumab increased CD4(+) and CD4(+)HLA-DR(+) T lymphocyte counts and intracellular CTLA-4 expression at the highest dose level. There was no significant change in Treg cell numbers after ipilimumab infusion. These data demonstrate that significant changes in T cell populations occur on exposure to a single dose of ipilimumab. Further studies with multiple doses are needed to explore this phenomenon further and to correlate changes in lymphocyte subpopulations with clinical events.


Assuntos
Anticorpos Monoclonais/administração & dosagem , Antígenos CD , Neoplasias da Mama/imunologia , Efeito Enxerto vs Tumor , Leucemia/imunologia , Transtornos Linfoproliferativos/imunologia , Linfócitos T Reguladores/imunologia , Anticorpos Monoclonais/metabolismo , Anticorpos Monoclonais/uso terapêutico , Antígenos CD/análise , Antígenos CD/imunologia , Antígenos CD/metabolismo , Antígenos de Diferenciação de Linfócitos T/análise , Neoplasias da Mama/fisiopatologia , Neoplasias da Mama/prevenção & controle , Neoplasias da Mama/terapia , Linfócitos T CD8-Positivos/imunologia , Antígeno CTLA-4 , Estudos de Casos e Controles , Contagem de Células , Feminino , Citometria de Fluxo , Doença Enxerto-Hospedeiro/imunologia , Efeito Enxerto vs Tumor/efeitos dos fármacos , Transplante de Células-Tronco Hematopoéticas/efeitos adversos , Humanos , Injeções Intravenosas , Subunidade alfa de Receptor de Interleucina-2/análise , Ipilimumab , Lectinas Tipo C/análise , Leucemia/fisiopatologia , Leucemia/prevenção & controle , Leucemia/terapia , Antígenos Comuns de Leucócito/análise , Ativação Linfocitária/imunologia , Transtornos Linfoproliferativos/fisiopatologia , Transtornos Linfoproliferativos/prevenção & controle , Transtornos Linfoproliferativos/terapia , Masculino , Recidiva , Transplante Homólogo
20.
Bioconjug Chem ; 22(12): 2461-73, 2011 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-22053932

RESUMO

With the aim of developing dendrimer nanovectors with a precisely controlled architecture and flexible structure for DNA transfection, we designed PAMAM dendrimers bearing a triethanolamine (TEA) core, with branching units pointing away from the center to create void spaces, reduce steric congestion, and increase water accessibility for the benefit of DNA delivery. These dendrimers are shown to form stable nanoparticles with DNA, promote cell uptake mainly via macropinocytosis, and act as effective nanovectors for DNA transfection in vitro on epithelial and fibroblast cells and, most importantly, in vivo in the mouse thymus, an exceedingly challenging organ for immune gene therapy. Collectively, these results validate our rational design approach of structurally flexible dendrimers with a chemically defined structure as effective nanovectors for gene delivery, and demonstrate the potential of these dendrimers in intrathymus gene delivery for future applications in immune gene therapy.


Assuntos
DNA/administração & dosagem , Dendrímeros/química , Etanolaminas/química , Timo/metabolismo , Transfecção , Animais , DNA/genética , Proteínas de Fluorescência Verde/genética , Células HeLa , Humanos , Camundongos , Camundongos Endogâmicos C57BL
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA