Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Opt Express ; 32(12): 20915-20930, 2024 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-38859460

RESUMO

Channeled spectropolarimetry enables real-time measurement of the polarimetric spectral information of the target. A crucial aspect of this technology is the accurate reconstruction of Stokes parameters spectra from the modulated spectra obtained through snapshot measurements. In this paper, a learnable sparse dictionary compressed sensing method is proposed for channeled spectropolarimeter (CSP) spectral reconstruction. Grounded in the compressive sensing framework, this method defines a variable sparse dictionary. It can learn prior knowledge from the measured modulated spectra, continuously optimizing its own structure and parameters iteratively by removing redundant basis functions and refining the matched basis functions. The learned sparse dictionary, post-training, can provide a more accurate sparse representation of the Stokes parameters spectra, enabling the proposed method to achieve more precise reconstruction results. To assess the efficacy of the proposed method, simulations and experiments were conducted, both of which consistently demonstrated the superior performance of the proposed approach. The suggested method is well-positioned to enhance the efficiency and accuracy of polarimetric spectral information retrieval in CSP applications.

2.
Nanotechnology ; 35(23)2024 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-38430569

RESUMO

Achieving highly efficient broadband absorption is an important research area in nanophotonics. In this paper, a novel method is proposed to design broadband near-perfect absorbers, consisting of a four-layer hemispherical concentric nanoshell array. The proposed nanostructure supports absorptivity exceeding 95% in the entire visible region, and the absorption bandwidth is determined by the interaction or 'hybridization' of the plasmons of the inner and outer metal-based nanoshells. Moreover, the designed absorber has wide-angle capability and is insensitive to polarization. The simple structure, as well as the stable absorption properties, suggests that such core-shell nanostructures can serve as a potential candidate for many applications such as solar energy harvesting, photo-detection, and emissivity control.

3.
Opt Express ; 31(15): 24387-24403, 2023 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-37475267

RESUMO

A reconstruction method incorporates the complete physical model into a traditional deep neural network (DNN) is proposed for channeled spectropolarimeter (CSP). Unlike traditional DNN-based methods that need to employ training datasets, the method starts from randomly initialized parameters which are constrained by the CSP physical model. It iterates through the gradient descent algorithm to obtain the estimation of the DNN parameters and then to obtain the mapping relationship. As a result, it eliminates the need for thousands of sets of ground truth data, while also leveraging the physical model to achieve high-precision reconstruction. As seen, the physical model participates in the optimization process of DNN parameters, thus achieving physical guidance for the DNN output results. Based on the characteristic of the network, we designate this method as the physics-guided neural network (PGNN). Both simulations and experiments demonstrate the superior performance of the proposed method. Our approach will further promote the practical application of CSP in a wider range of fields.

4.
Opt Express ; 31(12): 20457-20470, 2023 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-37381440

RESUMO

Coherent coupling of optical modes with a high Q-factor underpins realization of efficient light-matter interaction with multi-channels in resonant nanostructures. Here we theoretically studied the strong longitudinal coupling of three topological photonic states (TPSs) in a one-dimensional topological photonic crystal heterostructure embedded with a graphene monolayer in the visible frequencies. It is found that the three TPSs can strongly interplay with one another in the longitudinal direction, enabling a large Rabi splitting (∼ 48 meV) in spectral response. The triple-band perfect absorption and selective longitudinal field confinement have been demonstrated, where the linewidth of hybrid modes can reach 0.2 nm with Q-factor up to 2.6 × 103. Mode hybridization of dual- and triple-TPSs were investigated by calculation of the field profiles and Hopfield coefficients of the hybrid modes. Moreover, simulation results further show that resonant frequencies of the three hybrid TPSs can be actively controlled by simply changing the incident angle or structural parameters, which are nearly polarization independent in this strong coupling system. With the multichannel, narrow-band light trapping and selectively strong field localization in this simple multilayer regime, one can envision new possibilities for developing the practical topological photonic devices for on-chip optical detection, sensing, filtering, and light-emitting.

5.
Nano Lett ; 22(4): 1769-1777, 2022 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-35156826

RESUMO

Circularly polarized light carries spin angular momentum, so it can exert an optical torque on the polarization-anisotropic particle by the spin momentum transfer. Here, we show that giant positive and negative optical torques on Mie-resonant (gain) particles arise from the emergence of superhybrid modes with magnetic multipoles and electric toroidal moments, excited by linearly polarized beams. Anomalous positive and negative torques on particles (doped with judicious amount of dye molecules) are over 800 and 200 times larger than the ordinary lossy counterparts, respectively. Meanwhile, a rotational motor can be configured by switching the s- and p-polarized beams, exhibiting opposite optical torques. These giant and reversed optical torques are unveiled for the first time in the scattering spectrum, paving another avenue toward exploring unprecedented physics of hybrid and superhybrid multipoles in metaoptics and optical manipulations.

6.
Opt Express ; 30(7): 11504-11513, 2022 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-35473093

RESUMO

Highly efficient solar-to-thermal conversion is desired for the renewable energy technologies, such as solar thermo-photovoltaics and solar thermo-electric systems. In order to maximize the energy conversion efficiency, solar-selective absorbers are essential with its absorption characteristics specially tailored for solar applications. Here, we propose a wideband spectral-selective absorber based on three-dimensional (3D) nanostructured hyperbolic metamaterial (HMM), which can realize near-unity absorption across the UV and NIR spectral ranges. Moreover, the optical topological transition (OTT) of iso-frequency surface (IFS) is manipulated to selectively enhance light absorption in the entire solar spectrum, crucial for improved energy utilization. Impressive solar-to-thermal conversion efficiency of 95.5% has been achieved. Particularly, such superior properties can be retained well even over a wide range of incident angles. These findings open new avenues for designing high-performance solar thermal devices, especially in the fields related to solar energy harvesting.

7.
Opt Express ; 30(10): 16020-16030, 2022 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-36221455

RESUMO

Narrow-linewidth circular dichroism (CD) spectroscopy is a promising candidate to push the limits of molecular handedness detection toward a monolayer or even to a single molecule level. Here, we designed a hybrid metasurface consisting of a periodic array of symmetry-breaking dielectric dimers on a gold substrate, which can generate strong CD of 0.44 with an extremely-narrow linewidth of 0.40 nm in the near-infrared. We found that two surface lattice resonance modes can be excited in the designed metasurface, which can be superimposed in the crossing spectral region, enabling a remarkable differential absorption with a high Q-factor for circular polarizations. The multipole decomposition of the resonance modes shows that the magnetic dipole component contributes most to the CD. Our simulation results also show that the CD response of the chiral structure can be engineered by modulating the structural parameters to reach the optimal CD performance. Ultra-narrow-linewidth CD response offered by the proposed metasurface with dissymmetry provides new possibilities towards design of the high-sensitive polarization detecting, chiral sensing and efficient chiral light emitting devices.

8.
Phys Rev Lett ; 129(5): 053902, 2022 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-35960581

RESUMO

Elliptically polarized light waves carry the spin angular momentum (SAM), so they can exert optical torques on nanoparticles. Usually, the rotation follows the same direction as the SAM due to momentum conservation. It is counterintuitive to observe the reversal of optical torque acting on an ordinary dielectric nanoparticle illuminated by an elliptically or circularly polarized light wave. Here, we demonstrate that negative optical torques, which are opposite to the direction of SAM, can ubiquitously emerge when elliptically polarized light waves are impinged on dielectric nanoparticles obliquely. Intriguingly, the rotation can be switched between clockwise and counterclockwise directions by controlling the incident angle of light. Our study suggests a new playground to harness polarization-dependent optical force and torque for advancing optical manipulations.

9.
Opt Express ; 29(7): 11181-11193, 2021 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-33820236

RESUMO

Optical microcavities are capable of confining light to a small volume, which could dramatically enhance the light-matter interactions and hence improve the performances of photonic devices. However, in the previous works on the emergent properties with photonic molecules composed of multiple plasmonic microcavities, the underlying physical mechanism is unresolved, thereby imposing an inevitable restriction on manipulating degenerate modes in microcavity with outstanding performance. Here, we demonstrate the mode-mode interaction mechanism in photonic molecules composed of degenerate-mode cavity and single-mode cavity through utilizing the coupled mode theory. Numerical and analytical results further elucidate that the introduction of direct coupling between the degenerate-mode cavity and single-mode cavity can lift the mode degeneracy and give rise to the mode splitting, which contributes to single Fano resonance and dual EIT-like effects in the double-cavity photonic molecule structure. Four times the optical delay time compared to typical double-cavity photonic molecule are achieved after removing the mode degeneracy. Besides, with the preserved mode degeneracy, ultra-wide filtering bandwidth and high peak transmission is obtained in multiple-cavity photonic molecules. Our results provide a broad range of applications for ultra-compact and multifunction photonic devices in highly integrated optical circuits.

10.
Opt Lett ; 46(1): 106-109, 2021 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-33362027

RESUMO

Laguerre-Gaussian (LG) beams have orbital angular momentum (OAM). A particle trapped in an LG beam will rotate about the beam axis, due to the transfer of OAM. The rotation of the particle is usually in the same direction as that of the beam OAM. However, we discovered that when the LG beam is strongly focused, the rotation of the particle and the beam OAM might be in the opposite direction. This anomalous effect is caused by the negative torque on the particle exerted by the focused LG beam, which is similar to the optical pulling force in the linear case. We calculated the optical radiation force distribution of a micro-particle trapped in optical tweezers formed by a strongly focused LG beam, and showed that there exist stable trajectories of the particle that are controlled by the negative torque. We propose several necessary conditions for observing the counter-intuitive trajectories. Our work reveals that the strongly trapped micro-particle exhibits diversity of motion patterns.

11.
Opt Lett ; 46(18): 4614-4617, 2021 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-34525061

RESUMO

Optical trapping of single nanoparticles in vacuum has various applications in both precise measurements and fundamental physics. However, to date, the number and size of randomly loaded nanoparticles in an optical trap is difficult to determine unless in vacuum. In this Letter, an efficient method for nanoparticle size estimation in an optical tweezer system before the evacuation of air was proposed and demonstrated experimentally, using scattering light from levitated particles. The particle radii deduced from the scattering light power in our proposal and from the kinetic theory of particles in gas match well (with the differences of less than 10%). For sample particles with radii ranging within 50-100 nm, we also provide a preselection rule based on this method, where over half of the trapped particles are verified as single particles. Such a particle analysis method is applicable also for the size estimation of levitated diamond particles, gold particles, and other plasmonic particles and can be applied to discovering novel scattering effects.

12.
Opt Express ; 28(15): 22095-22104, 2020 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-32752477

RESUMO

Strong coupling between hyperbolic phonon-polaritons (HP) and magnetic polaritons (MP) is theoretically studied in a hexagonal boron nitride (hBN) covered deep silver grating structure. It is found that MP in grating trenches strongly interacts with HP in an anisotropic hBN thin film, leading to a large Rabi splitting with near-perfect dual band light absorption. Numerical results indicate that MP-HP coupling can be tuned by geometric parameters of the structure. More intriguingly, the resonantly enhanced fields for two branches of the hybrid mode demonstrate unusually different field patterns. One exhibits a volume-confined Zigzag propagation pattern in the hBN film, while the other shows a field-localization near the grating corners. Furthermore, resonance frequencies of these strongly coupled modes are very robust over a wide-angle range. The angle-insensitive strong interaction of hyperbolic-magnetic polaritons with dual band intense light absorption in this hybrid system offers a new paradigm for the development of various optical detecting, sensing and thermal emitting devices.

13.
Opt Lett ; 45(22): 6266-6269, 2020 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-33186966

RESUMO

Particles trapped by optical tweezers, behaving as mechanical oscillators in an optomechanical system, have found tremendous applications in various disciplines and are still arousing research interest in frontier and fundamental physics. These optically trapped oscillators provide compact particle confinement and strong oscillator stiffness. But these features are limited by the size of the focused light spot of a laser beam, which is typically restricted by the optical diffraction limit. Here, we propose to build an optical potential well with fine features assisted by the nonlinearity of the particle material, which is independent of the optical diffraction limit. We show that the potential well shape can have super-oscillation-like features and a Fano-resonance-like phenomenon, and the width of the optical trap is far below the diffraction limit. A particle with nonlinearity trapped by an ordinary optical beam provides a new platform with a sub-diffraction potential well and can have applications in high-accuracy optical manipulation and high-precision metrology.

14.
Phys Rev Lett ; 124(22): 223603, 2020 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-32567927

RESUMO

Light has shown an incredible capability in precision measurement based on optomechanic interaction in high vacuum by isolating environment noises. However, there are still obstructions, such as displacement and mass estimation error, highly hampering the improvement of absolute accuracy at the nanoscale. Here, we present a nonlinearity based metrology to precisely measure the position and mass of a nanoparticle with optical levitation under 10^{-5} mbar. By precisely controlling the oscillation amplitude of the levitated nanoparticle at the nonlinear regime for high accuracy calibration, we realized a feasible sub-picometer-level position measurement with an uncertainty of 1.0% without the prior information of mass, which can be further applied to weigh the femtogram-level mass with an uncertainty of 2.2%. It will also pave the way to construct a fine-calibrated optomechanic platform in high vacuum for high sensitivity and accuracy measurement in force and acceleration at the nanoscale and the study in quantum superposition at the mesoscopic scale.

15.
Opt Lett ; 43(19): 4582-4585, 2018 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-30272688

RESUMO

Displacement detection of a spherical particle in focused laser beams with a quadrant photodetector provides a fast and high precision way to determine the particle location. In contrast to the traditional Gaussian beams, the sensitivity of displacement detection using various doughnut beams is investigated. The sensitivity improvement for large spherical particles along the longitudinal direction is reported. With appropriate vortex charge l of the doughnut beams, they can outperform the Gaussian beam to get more than one order of magnitude higher sensitivity and, thus, have potential applications in various high-precision measurements. By using the levitating doughnut beam to detect the particle displacement, the result will also facilitate the recent proposal of levitating a particle in doughnut beams to suppress the light absorption.

16.
Opt Lett ; 43(22): 5587-5590, 2018 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-30439901

RESUMO

Precise detection of surface plasmons is crucial for the research of nanophotonics and quantum optics. In this Letter, we used a single nitrogen vacancy center in diamond as a probe to detect the surface plasmon that was tuned by the thickness of a metallic film. The fluorescence intensity and lifetime of the nitrogen vacancy (NV) center were measured to obtain the information of local light-matter interaction. A nonlinear thickness dependent change of the surface plasmon was observed, with the maximum at the thickness of approximately 30 nm. With optimized thickness of silver film, the fluorescence intensity of a single NV center was enhanced 2.6 times, and the lifetime was reduced by a factor of 3, without affecting the coherence time of the NV spin state. The results proved that this system can quantitatively detect the light-matter interaction at nanoscale, and it provides an approach to enhance the fluorescence intensity of a quantum emitter.

17.
Front Med (Lausanne) ; 9: 938718, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36160137

RESUMO

Background: It is unclear how hepatic steatosis impacts patient prognosis in the case of colorectal cancer with liver metastases (CRLM). The purpose of this review was to assess the effect of hepatic steatosis on patient survival and disease-free survival (DFS) in the case of CRLM. Methods: We examined the databases of PubMed, CENTRAL, Embase, Google Scholar, and ScienceDirect for studies reporting outcomes of CRLM patients with and without hepatic steatosis. We performed a random-effects meta-analysis using multivariable adjusted hazard ratios (HR). Results: Nine studies reporting data of a total of 14,197 patients were included. All patients had undergone surgical intervention. Pooled analysis of seven studies indicated that hepatic steatosis had no statistically significant impact on patient survival in CRLM (HR: 0.92 95% CI: 0.82, 1.04, I2 = 82%, p = 0.18). Specifically, we noted that there was a statistically significant improvement in cancer-specific survival amongst patients with hepatic steatosis (two studies; HR: 0.85 95% CI: 0.76, 0.95, I2 = 41%, p = 0.005) while there was no difference in overall survival (five studies; HR: 0.97 95% CI: 0.83, 1.13, I2 = 78%, p = 0.68). On meta-analysis of four studies, we noted that the presence of hepatic steatosis resulted in statistically significant reduced DFS in patients with CRLM (HR: 1.32 95% CI: 1.08, 1.62, I2 = 67%, p = 0.007). Conclusion: The presence of hepatic steatosis may not influence patient survival in CRLM. However, scarce data is suggestive of poor DFS in CRLM patients with hepatic steatosis. Further prospective studies taking into account different confounding variables are needed to better assess the effect of hepatic steatosis on outcomes of CRLM. Systematic review registration: [https://www.crd.york.ac.uk/prospero/#searchadvanced], identifier [CRD42022320665].

18.
ACS Nano ; 16(9): 13264-13278, 2022 09 27.
Artigo em Inglês | MEDLINE | ID: mdl-36053722

RESUMO

Optical manipulation has achieved great success in the fields of biology, micro/nano robotics and physical sciences in the past few decades. To date, the optical manipulation is still witnessing substantial progress powered by the growing accessibility of the complex light field, advanced nanofabrication and developed understandings of light-matter interactions. In this perspective, we highlight recent advancements of optical micro/nanomanipulations in cutting-edge applications, which can be fostered by structured optical forces enabled with diverse auxiliary multiphysical field/forces and structured particles. We conclude with our vision of ongoing and futuristic directions, including heat-avoided and heat-utilized manipulation, nonlinearity-mediated trapping and manipulation, metasurface/two-dimensional material based optical manipulation, as well as interface-based optical manipulation.

19.
Science ; 374(6566): eabj0039, 2021 Oct 22.
Artigo em Inglês | MEDLINE | ID: mdl-34672745

RESUMO

Rapid progress in miniaturizing vortex devices is driven by their integration with optical sensing, micromanipulation, and optical communications in both classical and quantum realms. Many such efforts are usually associated with on-chip micro- or nanoscale structures in real space and possess a static orbital angular momentum. Recently, a new branch of singular optics has emerged that seeks phase singularities in multiple dimensions, realizing vortex beams with compact nanodevices. Here, we review the topological phase singularities in real space, momentum space, and the spatiotemporal domain for generating vortex beams; discuss recent developments in theoretical and experimental research for generation, detection, and transmission of vortex beams; and provide an outlook for future opportunities in this area, ranging from fundamental research to practical applications.

20.
Nat Commun ; 12(1): 3722, 2021 06 17.
Artigo em Inglês | MEDLINE | ID: mdl-34140523

RESUMO

The ability of light beams to rotate nano-objects has important applications in optical micromachines and biotechnology. However, due to the diffraction limit, it is challenging to rotate nanoparticles at subwavelength scale. Here, we propose a method to obtain controlled fast orbital rotation (i.e., circumgyration) at deep subwavelength scale, based on the nonlinear optical effect rather than sub-diffraction focusing. We experimentally demonstrate rotation of metallic nanoparticles with orbital radius of 71 nm, to our knowledge, the smallest orbital radius obtained by optical trapping thus far. The circumgyration frequency of particles in water can be more than 1 kHz. In addition, we use a femtosecond pulsed Gaussian beam rather than vortex beams in the experiment. Our study provides paradigms for nanoparticle manipulation beyond the diffraction limit, which will not only push toward possible applications in optically driven nanomachines, but also spur more fascinating research in nano-rheology, micro-fluid mechanics and biological applications at the nanoscale.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA