Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Sci Rep ; 14(1): 5091, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38429354

RESUMO

Hard carbon has been widely used in anode of lithium/sodium ion battery, electrode of supercapacitor, and carbon molecular sieve for CO2 capture and hydrogen storage. In this study the lignin derived hard carbon products are investigated, and the conclusions are abstracted as follows. (1) The lignin derived hard carbon products consist of microcrystal units of sp2 graphene fragments, jointed by sp3 carbon atoms and forming sp2-sp3 hybrid hard carbon family. (2) From the lignin precursors to the sp2-sp3 hybrid hard carbon products, most carbon atoms retain their original electron configurations (sp2 or sp3) and keep their composition in lignin. (3) The architectures of lignin-derived hard carbon materials are closely dependent on the forms of their lignin precursors, and could be preformed by different pretreatment techniques. (4) The carbonization of lignin precursors follows the mechanism "carbonization in situ and recombination nearby". (5) Due to the high carbon ratio and abundant active functional groups in lignin, new activation techniques could be developed for control of pore size and pore volume. In general lignin is an excellent raw material for sp2-sp3 hybrid hard carbon products, a green and sustainable alternative resource for phenolic resin, and industrial production for lignin derived hard carbon products would be feasible.

2.
Sci Rep ; 13(1): 23063, 2023 Dec 27.
Artigo em Inglês | MEDLINE | ID: mdl-38155180

RESUMO

Microcrystal cellulose (MCC) is a green and sustainable resource that widely exists in various lignocellulose species in percentage 10% to 30%. The fine powder of MCC is often discarded in industrial productions that use lignocellulose as feedstock. The crystal structure of two types of MCC (sugarcane pith and bamboo pith) and their derived carbon materials are studied, and the key findings are summarized as follows. (1) In the MCC refined from sugarcane pith, there are large amount of cellulose 2D crystal, which can be converted to valuable 2D graphene crystal. (2) In the MCC refined from bamboo pith there are large amount of cluster microcrystal cellulose, which can be converted to soft and elastic graphene microcrystal (GMC). (3) The 2D cellulose in MCC of sugarcane pith has large surface area and is easily to be degraded to sugars by acid-base hydrolysis reaction, which can be carbonized to Fullerenes-like carbon spheres. (4) The crystal structures of MCC derived carbon materials are strongly impacted by the crystal structures of MCC, and the carbonization reaction of MCC follows "in situ carbonization" and "nearby recombination" mechanism. In general, the results from this study may open a new way for value-added applications of microcrystal cellulose.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA