Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Plant Cell ; 34(11): 4293-4312, 2022 10 27.
Artigo em Inglês | MEDLINE | ID: mdl-35929789

RESUMO

Stomata are crucial valves coordinating the fixation of carbon dioxide by photosynthesis and water loss through leaf transpiration. Phytochrome interacting factors (PIFs) are negative regulators of red light responses that belong to the basic helix-loop-helix family of transcription factors. Here, we show that the rice (Oryza sativa) PIF family gene OsPIL15 acts as a negative regulator of stomatal aperture to control transpiration in rice. OsPIL15 reduces stomatal aperture by activating rice ABSCISIC ACID INSENSITIVE 5 (OsABI5), which encodes a critical positive regulator of ABSCISIC ACID (ABA) signaling in rice. Moreover, OsPIL15 interacts with the NIGT1/HRS1/HHO family transcription factor rice HRS1 HOMOLOG 3 (OsHHO3) to possibly enhance the regulation of stomatal aperture. Notably, we discovered that the maize (Zea mays) PIF family genes ZmPIF1 and ZmPIF3, which are homologous to OsPIL15, are also involved in the regulation of stomatal aperture in maize, indicating that PIF-mediated regulation of stomatal aperture may be conserved in the plant lineage. Our findings explain the molecular mechanism by which PIFs play a role in red-light-mediated stomatal opening, and demonstrate that PIFs regulate stomatal aperture by coordinating the red light and ABA signaling pathways.


Assuntos
Oryza , Fitocromo , Ácido Abscísico/metabolismo , Fitocromo/genética , Fitocromo/metabolismo , Regulação da Expressão Gênica de Plantas , Oryza/metabolismo , Luz , Zea mays/genética , Estômatos de Plantas/metabolismo
2.
Anal Chem ; 94(22): 8058-8065, 2022 06 07.
Artigo em Inglês | MEDLINE | ID: mdl-35611971

RESUMO

The detection and therapy of cancers in the early stage significantly alleviate the associated dangers. Optical devices offer new opportunities for these early measures. However, the clinical translation of the existing methods is severely hindered by their relatively low sensitivity or unclear physiological metabolism. Here, an optical microfiber sensor with a drug loading gold nanorod-black phosphorous nanointerface, as an ultrasensitive biosensor and nanotherapy platform, is developed to meet the early-stage requirement. With interface sensitization and functionalization of the hybrid nanointerface, the microfiber sensor presents an ultrahigh sensing performance, achieving the selective detection of the HER2 biomarker with limits of detection of 0.66 aM in buffer solution and 0.77 aM in 10% serum. It can also distinguish breast cancer cells from other cells in the early stage. Additionally, enabled by the interface, the optical microfiber is able to realize cellular nanotherapy, including photothermal/chemotherapy with pump laser coupling after diagnosis, and evaluate therapy results in real time. The immobilization of the interface on the optical microfiber surface prevents the damage to normal cells induced by nanomaterial enrichment, making the device more efficient and intelligent. This study opens up a new avenue for the development of smart optical platforms for sensitive biosensing and precision therapy.


Assuntos
Técnicas Biossensoriais , Nanotubos , Dispositivos Ópticos , Ouro , Fósforo
3.
Int J Mol Sci ; 22(16)2021 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-34445391

RESUMO

The NIGT1/HRS1/HHO transcription factor (TF) family is a new subfamily of the G2-like TF family in the GARP superfamily and contains two conserved domains: the Myb-DNA binding domain and the hydrophobic and globular domain. Some studies showed that NIGT1/HRS1/HHO TFs are involved in coordinating the absorption and utilization of nitrogen and phosphorus. NIGT1/HRS1/HHO TFs also play an important role in plant growth and development and in the responses to abiotic stresses. This review focuses on recent advances in the structural characteristics of the NIGT1/HRS1/HHO TF family and discusses how the roles and functions of the NIGT1/HRS1/HHO TFs operate in terms of in plant growth, development, and stress responses.


Assuntos
Desenvolvimento Vegetal , Plantas/metabolismo , Fatores de Transcrição/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Regulação da Expressão Gênica de Plantas , Nitrogênio/metabolismo , Fósforo/metabolismo , Proteínas de Plantas/metabolismo , Estresse Fisiológico
4.
Adv Mater ; 35(33): e2304116, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37342974

RESUMO

Optical fibers can be effective biosensors when employed in early-stage diagnostic point-of-care devices as they can avoid interference from molecules with similar redox potentials. Nevertheless, their sensitivity needs to be improved for real-world applications, especially for small-molecule detection. This work demonstrates an optical microfiber biosensor for dopamine (DA) detection based on the DA-binding-induced aptamer conformational transitions that occur at plasmonic coupling sites on a double-amplified nanointerface. The sensor exhibits ultrahigh sensitivity when detecting DA molecules at the single-molecule level; additionally, this work provides an approach for overcoming optical device sensitivity limits, further extending optical fiber single-molecule detection to a small molecule range (e.g., DA and metal ions). The selective energy enhancement and signal amplification at the binding sites effectively avoid nonspecific amplification of the whole fiber surface which may lead to false-positive results. The sensor can detect single-molecule DA signals in body-fluids. It can detect the released extracellular DA levels and monitor the DA oxidation process. An appropriate aptamer replacement allows the sensor to be used for the detection of other target small molecules and ions at the single-molecule level. This technology offers alternative opportunities for developing noninvasive early-stage diagnostic point-of-care devices and flexible single-molecule detection techniques in theoretical research.


Assuntos
Técnicas Biossensoriais , Dopamina , Técnicas Biossensoriais/métodos , Fibras Ópticas , Metais , Íons
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA