Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
J Environ Sci (China) ; 89: 206-217, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-31892392

RESUMO

Persulfate (PS)-based oxidation technologies are attracting increasing attentions in water treatment due to their high efficiency and stability. In this study, a novel diatomite supported MnCeOx composite (MnCeOx/diatomite) was prepared and characterized for activation of PS to degrade organic pollutants. Results indicated that diatomite not only dispersed MnCeOx and increased the specific surface area of catalyst, but also improved the low-valence metal site (Mn2+ and Ce3+) and reactive oxygen species site (-OH) of MnCeOx, thus enhancing the activities of MnCeOx. MnCeOx/diatomite/PS showed high efficiency for multiple dyes and pharmaceutical pollutants. Constant rate (k) of MnCeOx/diatomite (kMnCeOx/diatomite) was three times higher than the sum of constant rate of MnCeOx (kMnCeOx) and constant rate of diatomite (kdiatomite). In addition, MnCeOx/diatomite showed wide pH application (5-9). Cl- and NO32- had no effect while SO42- and humid acid had slightly negative effects on MnCeOx/diatomite/PS system. Moreover, MnCeOx/diatomite showed good reusability and stability. Mechanism analyses indicated that electron transfer of Mn and Ce attributed to the activation of PS and oxygen to produce free radicals. SO4-, OH and O2- on the surface of catalyst were the main active free radicals to attack pollutants.


Assuntos
Terra de Diatomáceas/química , Poluentes Ambientais , Compostos Orgânicos/química , Modelos Químicos , Oxirredução , Sulfatos , Poluentes Químicos da Água
2.
Int J Biol Macromol ; 259(Pt 2): 129358, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38218267

RESUMO

To expand functions of transparent wood (TW) including fluorescence, ultraviolet blocking, heat preservation and insulation, we adopted carbon quantum dots (CQDs) to prepare luminescent transparent wood. CQDs with yellow/red fluorescence (YCD/RCD) were prepared by chitosan and o-phenylenediamine. Afterwards, Balsa woods were pretreated to obtain wood frameworks (DW/LW), which were further combined with epoxy resin for achieving transparent woods (DW-TW/LW-TW). Results showed LW retained more lignin, the LW-TW blocked more ultraviolet light, displaying the better visible transmission and mechanical strength than DW-TW. After adding YCD and RCD to LW-TW, the yellow and red fluorescence transparent woods with outstanding mechanical and ultraviolet blocking properties were prepared, especially the red fluorescence transparent wood (RTW). Specifically, the tensile strength and elongation at break of RTW reached up to 19.39 MPa and 5.35 %, respectively. Moreover, RTW could block 78.8 % of UV-B light and 78 % of UV-A light, respectively. Besides, RTW possessed excellent visible transmission (70.3 %) and UV blocking (88.87 %). Significantly, both RTW and YTW displayed outstanding water repellency, excellent durability, good thermal stability and insulation. Predictably, luminescent transparent woods certainly will enhance the adaptability of wood, and broaden its applications in green decoration, lighting setup, sensor and other fields.


Assuntos
Quitosana , Madeira , Luminescência , Fluorescência , Carbono
3.
Front Chem ; 8: 177, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32266209

RESUMO

Metal species and synthetic method determine the characteristics of spinel ferrite MFe2O4. Herein, a series of MFe2O4 (M = Co, Cu, Mn, Zn) were synthesized to investigate the effect of M-site metal on persulfate activation for the removal of organics from aqueous solution. Results showed that M-site metal of MFe2O4 significantly influenced the catalytic persulfate oxidation of organics. The efficiency of the removal of organics using different MFe2O4 + persulfate systems followed the order of CuFe2O4 > CoFe2O4 > MnFe2O4 > ZnFe2O4. Temperature-programmed oxidation and cyclic voltammetry analyses indicated that M-site metal affected the catalyst reducibility, reversibility of M2+/M3+ redox couple, and electron transfer, and the strengths of these capacities were consistent with the catalytic performance. Besides, it was found that surface hydroxyl group was not the main factor affecting the reactivity of MFe2O4 in persulfate solution. Moreover, synthetic methods (sol-gel, solvothermal, and coprecipitation) for MFe2O4 were further compared. Characterization showed that sol-gel induced good purity, porous structure, large surface area, and favorable element chemical states for ferrite. Consequently, the as-synthesized CuFe2O4 showed better catalytic performance in the removal of organics (96.8% for acid orange 7 and 62.7% for diclofenac) along with good reusability compared with those obtained by solvothermal and coprecipitation routes. This work provides a deeper understanding of spinel ferrite MFe2O4 synthesis and persulfate activation.

4.
Chemosphere ; 242: 125191, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-31675588

RESUMO

CuO-γFe2O3 was fabricated as a novel and effective persulfate (PS) catalyst to remove bio-refractory organic pollutants. Characterization results showed that CuO-γFe2O3 possessed a relatively large surface area among transition metal oxides which provided favorable adsorption and activation sites for PS to degrade pollutants. There was an obvious synergy between CuO and γFe2O3 in the composite, which played 84.7% role in Acid orange 7 (AO7) removal. Under the optimal conditions (CuO-γFe2O3 dosage = 0.6 g L-1, PS dosage = 0.8 g L-1, unadjusted solution pH), almost complete AO7 was rapidly eliminated in 5 min. Moreover, the wide workable pH range (2-13), good stability (0.82 mg L-1 Cu leached, almost no Fe leached) and reusability (4 times) were the significant virtues of CuO-γFe2O3 for wastewater treatment. Besides, the reaction mechanism mainly based on the interaction among Cu(II/III) and Fe(II/III) species for sulfate radical (SO4-) generation was emphatically elucidated by the analyses of radicals, PS utilization, TOC removal and metal chemical states. Finally, CuO-γFe2O3+PS system displayed desirable removal of multiple organic pollutants with different molecular structures. In light of the prominent advantages of CuO-γFe2O3+PS, this work extended activated PS process in treating refractory organic wastewater.


Assuntos
Cobre/química , Poluentes Ambientais/isolamento & purificação , Compostos Férricos/química , Sulfatos/química , Águas Residuárias/química , Purificação da Água/métodos , Adsorção , Compostos Azo/química , Benzenossulfonatos/química , Catálise , Poluentes Ambientais/análise , Poluentes Químicos da Água/análise , Poluentes Químicos da Água/química
5.
Front Chem ; 7: 877, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31998681

RESUMO

In this work, grapheme oxide (GO) nano-sheets were synthesized and dispersed in the aqueous phase for the interfacial polymerization (IP) process to develop a new type of thin-film composite (TFC) membranes for forward osmosis (FO) applications. The effects of the GO concentrations on the membrane surfaces and cross-sectional morphologies and FO desalination performances of the as-prepared TFC membranes were investigated systematically. Compared with the control membrane, the optimal GO-incorporated TFC membrane displayed higher water flux, less specific reverse solute flux (SRSF) and lower structure parameter. Moreover, the optimized membrane showed 75.0 times higher chlorine resistance than the control membrane. In general, these new type of membranes could be an effective strategy to fabricate high-performance FO membranes with good desalination performance and chlorine resistance.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA