RESUMO
Mosaic loss of the X chromosome (mLOX) is the most common clonal somatic alteration in leukocytes of female individuals1,2, but little is known about its genetic determinants or phenotypic consequences. Here, to address this, we used data from 883,574 female participants across 8 biobanks; 12% of participants exhibited detectable mLOX in approximately 2% of leukocytes. Female participants with mLOX had an increased risk of myeloid and lymphoid leukaemias. Genetic analyses identified 56 common variants associated with mLOX, implicating genes with roles in chromosomal missegregation, cancer predisposition and autoimmune diseases. Exome-sequence analyses identified rare missense variants in FBXO10 that confer a twofold increased risk of mLOX. Only a small fraction of associations was shared with mosaic Y chromosome loss, suggesting that distinct biological processes drive formation and clonal expansion of sex chromosome missegregation. Allelic shift analyses identified X chromosome alleles that are preferentially retained in mLOX, demonstrating variation at many loci under cellular selection. A polygenic score including 44 allelic shift loci correctly inferred the retained X chromosomes in 80.7% of mLOX cases in the top decile. Our results support a model in which germline variants predispose female individuals to acquiring mLOX, with the allelic content of the X chromosome possibly shaping the magnitude of clonal expansion.
Assuntos
Aneuploidia , Cromossomos Humanos X , Células Clonais , Leucócitos , Mosaicismo , Adulto , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Alelos , Doenças Autoimunes/genética , Bancos de Espécimes Biológicos , Segregação de Cromossomos/genética , Cromossomos Humanos X/genética , Cromossomos Humanos Y/genética , Células Clonais/metabolismo , Células Clonais/patologia , Exoma/genética , Proteínas F-Box/genética , Predisposição Genética para Doença/genética , Mutação em Linhagem Germinativa , Leucemia/genética , Leucócitos/metabolismo , Modelos Genéticos , Herança Multifatorial/genética , Mutação de Sentido Incorreto/genéticaRESUMO
Ewing sarcoma (EwS) is a rare bone and soft tissue malignancy driven by chromosomal translocations encoding chimeric transcription factors, such as EWSR1-FLI1, that bind GGAA motifs forming novel enhancers that alter nearby expression. We propose that germline microsatellite variation at the 6p25.1 EwS susceptibility locus could impact downstream gene expression and EwS biology. We performed targeted long-read sequencing of EwS blood DNA to characterize variation and genomic features important for EWSR1-FLI1 binding. We identified 50 microsatellite alleles at 6p25.1 and observed that EwS-affected individuals had longer alleles (>135 bp) with more GGAA repeats. The 6p25.1 GGAA microsatellite showed chromatin features of an EWSR1-FLI1 enhancer and regulated expression of RREB1, a transcription factor associated with RAS/MAPK signaling. RREB1 knockdown reduced proliferation and clonogenic potential and reduced expression of cell cycle and DNA replication genes. Our integrative analysis at 6p25.1 details increased binding of longer GGAA microsatellite alleles with acquired EWSR-FLI1 to promote Ewing sarcomagenesis by RREB1-mediated proliferation.
Assuntos
Neoplasias Ósseas , Sarcoma de Ewing , Humanos , Alelos , Neoplasias Ósseas/genética , Neoplasias Ósseas/patologia , Linhagem Celular Tumoral , Regulação Neoplásica da Expressão Gênica , Proteínas de Fusão Oncogênica/genética , Proteínas de Fusão Oncogênica/metabolismo , Proteína Proto-Oncogênica c-fli-1/genética , Proteína Proto-Oncogênica c-fli-1/metabolismo , Proteína EWS de Ligação a RNA/genética , Proteína EWS de Ligação a RNA/metabolismo , Sarcoma de Ewing/genética , Sarcoma de Ewing/metabolismo , Sarcoma de Ewing/patologiaRESUMO
Telomere biology disorders (TBD), caused by pathogenic germline variants in telomere-related genes, present with multi-organ disease and a predisposition to cancer. Clonal hematopoiesis (CH) as a marker of cancer development and survival in TBD is poorly understood. Here, we characterized the clonal landscape of a large cohort of 207 TBD patients with a broad range of age and phenotype. CH occurred predominantly in symptomatic patients and in signature genes typically associated with cancers: PPM1D, POT1, TERT promoter (TERTp), U2AF1S34, and/or TP53. Chromosome 1q gain (Chr1q+) was the commonest karyotypic abnormality. Clinically, multiorgan involvement and CH in TERTp, TP53, and splicing factor genes associated with poorer overall survival. Chr1q+, and splicing factor or TP53 mutations significantly increased the risk of hematologic malignancies, regardless of the clonal burden. Chr1q+ and U2AF1S34 mutated clones were pre-malignant events associated with the secondary acquisition of mutations in genes related to hematologic malignancies. Like known effects of Chr1q+ and TP53-CH, functional studies demonstrated that U2AF1S34 mutations primarily compensated for aberrant upregulation of TP53 and interferon pathways in telomere-dysfunctional hematopoietic stem cells, highlighting the TP53 pathway as a canonical route of malignancy in TBD. In contrast, somatic POT1/PPM1D/TERTp-CH had distinct trajectories unrelated to cancer development. With implications beyond TBD, our data show that telomere dysfunction is a strong selective pressure for CH. In TBD, CH is a poor prognostic marker associated with worse overall survival. The identification of key regulatory pathways that drive clonal transformation in TBD allows the identification of patients at a higher risk of cancer development.
RESUMO
Age-related clonal expansion of cells harbouring mosaic chromosomal alterations (mCAs) is one manifestation of clonal haematopoiesis. Identifying factors that influence the generation and promotion of clonal expansion of mCAs are key to investigate the role of mCAs in health and disease. Herein, we report on widely measured serum biomarkers and their possible association with mCAs, which could provide new insights into molecular alterations that promote acquisition and clonal expansion. We performed a cross-sectional investigation of the association of 32 widely measured serum biomarkers with autosomal mCAs, mosaic loss of the Y chromosome, and mosaic loss of the X chromosome in 436 784 cancer-free participants from the UK Biobank. mCAs were associated with a range of commonly measured serum biomarkers such as lipid levels, circulating sex hormones, blood sugar homeostasis, inflammation and immune function, vitamins and minerals, kidney function, and liver function. Biomarker levels in participants with mCAs were estimated to differ by up to 5% relative to mCA-free participants, and individuals with higher cell fraction mCAs had greater deviation in mean biomarker values. Polygenic scores associated with sex hormone binding globulin, vitamin D, and total cholesterol were also associated with mCAs. Overall, we observed commonly used clinical serum biomarkers related to disease risk are associated with mCAs, suggesting mechanisms involved in these diseases could be related to mCA proliferation and clonal expansion.
Assuntos
Cromossomos Humanos Y , Mosaicismo , Humanos , Masculino , Bancos de Espécimes Biológicos , Estudos Transversais , Biomarcadores , Reino UnidoRESUMO
Severe aplastic anaemia (SAA) is a rare and life-threatening bone marrow failure disorder. We used data from the transplant outcomes in aplastic anaemia study to characterize mosaic chromosomal alterations (mCAs) in the peripheral blood of 738 patients with acquired SAA and evaluate their associations with telomere length (TL) and survival post-haematopoietic cell transplant (HCT). The median age at HCT was 20.4 years (range = 0.2-77.4). Patients with SAA had shorter TL than expected for their age (median TL percentile for age: 35.7th; range <1-99.99). mCAs were detected in 211 patients (28.6%), with chr6p copy-neutral loss of heterozygosity (6p-CNLOH) in 15.9% and chr7 loss in 3.0% of the patients; chrX loss was detected in 4.1% of female patients. Negative correlations between mCA cell fraction and measured TL (r = -0.14, p = 0.0002), and possibly genetically predicted TL (r = -0.07, p = 0.06) were noted. The post-HCT 3-year survival probability was low in patients with chr7 loss (39% vs. 72% in patients with chr6-CNLOH, 60% in patients with other mCAs and 70% in patients with no mCAs; p-log rank = 0.001). In multivariable analysis, short TL (p = 0.01), but not chr7 loss (p = 0.29), was associated with worse post-HCT survival. TL may guide clinical decisions in patients with SAA.
Assuntos
Anemia Aplástica , Transplante de Células-Tronco Hematopoéticas , Humanos , Anemia Aplástica/genética , Anemia Aplástica/sangue , Feminino , Masculino , Adulto , Pessoa de Meia-Idade , Adolescente , Criança , Idoso , Pré-Escolar , Lactente , Adulto Jovem , Aberrações Cromossômicas , Telômero/genética , Homeostase do TelômeroRESUMO
Patients with severe aplastic anemia (SAA) can have an unrecognized inherited bone marrow failure syndrome (IBMFS) because of phenotypic heterogeneity. We curated germline genetic variants in 104 IBMFS-associated genes from exome sequencing performed on 732 patients who underwent hematopoietic cell transplant (HCT) between 1989 and 2015 for acquired SAA. Patients with pathogenic or likely pathogenic (P/LP) variants fitting known disease zygosity patterns were deemed unrecognized IBMFS. Carriers were defined as patients with a single P/LP variant in an autosomal recessive gene or females with an X-linked recessive P/LP variant. Cox proportional hazard models were used for survival analysis with follow-up until 2017. We identified 113 P/LP single-nucleotide variants or small insertions/deletions and 10 copy number variants across 42 genes in 121 patients. Ninety-one patients had 105 in silico predicted deleterious variants of uncertain significance (dVUS). Forty-eight patients (6.6%) had an unrecognized IBMFS (33% adults), and 73 (10%) were carriers. No survival difference between dVUS and acquired SAA was noted. Compared with acquired SAA (no P/LP variants), patients with unrecognized IBMFS, but not carriers, had worse survival after HCT (IBMFS hazard ratio [HR], 2.13; 95% confidence interval[CI], 1.40-3.24; P = .0004; carriers HR, 0.96; 95% CI, 0.62-1.50; P = .86). Results were similar in analyses restricted to patients receiving reduced-intensity conditioning (n = 448; HR IBMFS = 2.39; P = .01). The excess mortality risk in unrecognized IBMFS attributed to death from organ failure (HR = 4.88; P < .0001). Genetic testing should be part of the diagnostic evaluation for all patients with SAA to tailor therapeutic regimens. Carriers of a pathogenic variant in an IBMFS gene can follow HCT regimens for acquired SAA.
Assuntos
Anemia Aplástica , Transplante de Células-Tronco Hematopoéticas , Adulto , Anemia Aplástica/diagnóstico , Anemia Aplástica/genética , Anemia Aplástica/terapia , Síndrome Congênita de Insuficiência da Medula Óssea , Feminino , Testes Genéticos , Transplante de Células-Tronco Hematopoéticas/efeitos adversos , Humanos , Condicionamento Pré-Transplante/métodosRESUMO
Severe aplastic anemia (SAA) is a rare disorder characterized by hypoplastic bone marrow and progressive pancytopenia. The etiology of acquired SAA is not understood but is likely related to abnormal immune responses and environmental exposures. We conducted a genome-wide association study of individuals with SAA genetically matched to healthy controls in discovery (359 cases, 1,396 controls) and validation sets (175 cases, 1,059 controls). Combined analyses identified linked SNPs in distinct blocks within the major histocompatibility complex on 6p21. The top SNP encodes p.Met76Val in the P4 binding pocket of the HLA class II gene HLA-DPB1 (rs1042151A>G, odds ratio [OR] 1.75, 95% confidence interval [CI] 1.50-2.03, p = 1.94 × 10-13) and was associated with HLA-DP cell surface expression in healthy individuals (p = 2.04 × 10-6). Phylogenetic analyses indicate that Val76 is not monophyletic and likely occurs in conjunction with different HLA-DP binding groove conformations. Imputation of HLA-DPB1 alleles revealed increased risk of SAA associated with Val76-encoding alleles DPB1∗03:01, (OR 1.66, p = 1.52 × 10-7), DPB1∗10:01 (OR 2.12, p = 0.0003), and DPB1∗01:01 (OR 1.60, p = 0.0008). A second SNP near HLA-B, rs28367832G>A, reached genome-wide significance (OR 1.49, 95% CI 1.22-1.78, p = 7.27 × 10-9) in combined analyses; the association remained significant after excluding cases with clonal copy-neutral loss-of-heterozygosity affecting class I HLA genes (8.6% of cases and 0% of controls). SNPs in the HLA class II gene HLA-DPB1 and possibly class I (HLA-B) are associated with SAA. The replacement of Met76 to Val76 in certain HLA-DPB1 alleles might influence risk of SAA through mechanisms involving DP peptide binding specificity, expression, and/or other factors affecting DP function.
Assuntos
Anemia Aplástica/etiologia , Marcadores Genéticos , Predisposição Genética para Doença , Cadeias beta de HLA-DP/genética , Polimorfismo de Nucleotídeo Único , Adolescente , Adulto , Idoso , Anemia Aplástica/patologia , Estudos de Casos e Controles , Criança , Pré-Escolar , Feminino , Estudo de Associação Genômica Ampla , Genótipo , Humanos , Lactente , Masculino , Pessoa de Meia-Idade , Filogenia , Fatores de Risco , Índice de Gravidade de Doença , Adulto JovemRESUMO
Chordoma is a rare bone tumor with genetic risk factors largely unknown. We conducted a whole-exome sequencing (WES) analysis of germline DNA from 19 familial chordoma cases in five pedigrees and 137 sporadic chordoma patients and identified 17 rare germline variants in PALB2 and BRCA2, whose products play essential roles in homologous recombination (HR) and tumor suppression. One PALB2 variant showed disease cosegregation in a family with four affected people or obligate gene carrier. Chordoma cases had a significantly increased burden of rare variants in both genes when compared to population-based controls. Four of the six PALB2 variants identified from chordoma patients modestly affected HR function and three of the 11 BRCA2 variants caused loss of function in experimental assays. These results, together with previous reports of abnormal morphology and Brachyury expression of the notochord in Palb2 knockout mouse embryos and genomic signatures associated with HR defect and HR gene mutations in advanced chordomas, suggest that germline mutations in PALB2 and BRCA2 may increase chordoma susceptibility. Our data shed light on the etiology of chordoma and support the previous finding that PARP-1 inhibitors may be a potential therapy for some chordoma patients.
Assuntos
Proteína BRCA2 , Neoplasias da Mama , Cordoma , Proteína do Grupo de Complementação N da Anemia de Fanconi , Animais , Proteína BRCA2/genética , Neoplasias da Mama/genética , Cordoma/genética , Proteína do Grupo de Complementação N da Anemia de Fanconi/genética , Feminino , Genes BRCA2 , Predisposição Genética para Doença , Mutação em Linhagem Germinativa , Humanos , CamundongosRESUMO
Recent studies have reported a higher than anticipated frequency of large clonal autosomal mosaic events >2 Mb in size in the aging population. Mosaic events are detected from analyses of intensity parameters of linear stretches with deviations in heterozygous probes of single nucleotide polymorphism microarrays. The non-random distribution of detected mosaic events throughout the genome suggests common mechanisms could influence the formation of mosaic events. Here we use publicly available data tracks from the University of California Santa Cruz Genome Browser to investigate the genomic characteristics of the regions at the terminal ends of two frequent types of large structural mosaic events: telomeric neutral events and interstitial losses. We observed breakpoints are more likely to occur in regions enriched for open chromatin, increased gene density, elevated meiotic recombination rates and in the proximity of repetitive elements. These observations suggest that detected mosaic event breakpoints are preferentially recovered in genomic regions that are observed to be active and thus more accessible to environmental exposures and events related to gene transcription. We propose that errors in DNA repair pathways, such as non-homologous end joining and homologous recombination, may be important cellular mechanisms that lead to the formation of large structural mosaic events such as interstitial losses and copy neutral events that include telomeres. Further studies using next generation sequencing technologies should be instrumental in mapping the specific junctions of mosaic events to the nucleotide and provide insights into the molecular mechanisms responsible for clonal somatic structural events.
Assuntos
Quebra Cromossômica , Cromossomos Humanos , Cromatina , Quebras de DNA , Variações do Número de Cópias de DNA , Bases de Dados de Ácidos Nucleicos , Genoma Humano , Genômica/métodos , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Humanos , Mosaicismo , Polimorfismo de Nucleotídeo Único , Recombinação GenéticaRESUMO
OBJECTIVE: To elucidate the genetic architecture of gene expression in pancreatic tissues. DESIGN: We performed expression quantitative trait locus (eQTL) analysis in histologically normal pancreatic tissue samples (n=95) using RNA sequencing and the corresponding 1000 genomes imputed germline genotypes. Data from pancreatic tumour-derived tissue samples (n=115) from The Cancer Genome Atlas were included for comparison. RESULTS: We identified 38 615 cis-eQTLs (in 484 genes) in histologically normal tissues and 39 713 cis-eQTL (in 237 genes) in tumour-derived tissues (false discovery rate <0.1), with the strongest effects seen near transcriptional start sites. Approximately 23% and 42% of genes with significant cis-eQTLs appeared to be specific for tumour-derived and normal-derived tissues, respectively. Significant enrichment of cis-eQTL variants was noted in non-coding regulatory regions, in particular for pancreatic tissues (1.53-fold to 3.12-fold, p≤0.0001), indicating tissue-specific functional relevance. A common pancreatic cancer risk locus on 9q34.2 (rs687289) was associated with ABO expression in histologically normal (p=5.8×10-8) and tumour-derived (p=8.3×10-5) tissues. The high linkage disequilibrium between this variant and the O blood group generating deletion variant in ABO (exon 6) suggested that nonsense-mediated decay (NMD) of the 'O' mRNA might explain this finding. However, knockdown of crucial NMD regulators did not influence decay of the ABO 'O' mRNA, indicating that a gene regulatory element influenced by pancreatic cancer risk alleles may underlie the eQTL. CONCLUSIONS: We have identified cis-eQTLs representing potential functional regulatory variants in the pancreas and generated a rich data set for further studies on gene expression and its regulation in pancreatic tissues.
Assuntos
Sistema ABO de Grupos Sanguíneos/genética , Expressão Gênica , Pâncreas , Neoplasias Pancreáticas/genética , Locos de Características Quantitativas , RNA Neoplásico/análise , Transcriptoma , Alelos , Cromossomos Humanos Par 9 , Estudo de Associação Genômica Ampla , Genótipo , Humanos , Degradação do RNAm Mediada por Códon sem Sentido , Polimorfismo de Nucleotídeo Único , Sequências Reguladoras de Ácido Nucleico , Análise de Sequência de RNARESUMO
BACKGROUND: The recommended genomic DNA input requirements for whole genome single nucleotide polymorphism microarrays can limit the scope of molecular epidemiological studies. We performed a large-scale evaluation of whole genome amplified DNA as input into high-density, whole-genome Illumina® Infinium® SNP microarray. RESULTS: Overall, 6622 DNA samples from 5970 individuals were obtained from three distinct biospecimen sources and genotyped using gDNA and/or wgaDNA inputs. When genotypes from the same individual were compared with standard, native gDNA input amount, we observed 99.94% mean concordance with wgaDNA input. CONCLUSIONS: Our results demonstrate that carefully conducted studies with wgaDNA inputs can yield high-quality genotyping results. These findings should enable investigators to consider expansion of ongoing studies using high-density SNP microarrays, currently challenged by small amounts of available DNA.
Assuntos
DNA/genética , Genoma Humano , Mucosa Bucal/metabolismo , Neoplasias/genética , Polimorfismo de Nucleotídeo Único , Saliva/metabolismo , DNA/análise , DNA/sangue , Genômica , Genótipo , Humanos , Neoplasias/sangue , Técnicas de Amplificação de Ácido Nucleico , Análise de Sequência com Séries de Oligonucleotídeos/métodosRESUMO
Studies of chromosomal aberrations in blood or bone marrow of patients with Fanconi anemia (FA) have focused on their associations with leukemic transformation. The role of such abnormalities on outcomes after hematopoietic cell transplantation (HCT) is unclear. We used genome-wide single nucleotide polymorphism arrays to identify chromosomal aberrations in pre-HCT blood samples from 73 patients with FA who received unrelated donor HCT for severe aplastic anemia between 1991 and 2007. Outcome data and blood samples were available through the Center for International Blood and Marrow Transplant Research. For survival analyses, we used the Kaplan-Meier estimator to calculate the survival probabilities and the exact log-rank test to compare the survival differences across groups. Chromosomal aberrations were detected in 16 (22%) patients; most frequent were clonal copy loss in chromosome 7 (9.6%), clonal copy gains in the long arm (q) of chromosome 1 (chr1q+) (8.2%), and clonal or complete copy gains in the q arm of chromosome 3 (chr3q+) (8.2%). Seven (9.6%) patients had alterations in 3 or more chromosomes. Poor post-HCT overall survival (OS) was noted in patients with chr3q+ (P = .04), or those with abnormalities in ≥3 chromosomes (P = .03). The 1-year OS was 0% versus 45% in patients with either alteration versus its absence. No statistically significant differences in OS were noted in patients carrying deletions in chr7 (1-year OS = 29% versus 42%; log-rank P = .74). The study is limited by the small sample size. A larger, prospective study is warranted to validate our findings in light of recent improvement in transplant modalities and outcomes.
Assuntos
Aberrações Cromossômicas , Cromossomos Humanos Par 3/genética , Cromossomos Humanos Par 7/genética , Anemia de Fanconi , Transplante de Células-Tronco Hematopoéticas , Doadores não Relacionados , Adolescente , Adulto , Aloenxertos , Criança , Pré-Escolar , Intervalo Livre de Doença , Anemia de Fanconi/genética , Anemia de Fanconi/mortalidade , Anemia de Fanconi/patologia , Anemia de Fanconi/terapia , Feminino , Humanos , Masculino , Estudos Prospectivos , Taxa de SobrevidaRESUMO
Analyses of genome-wide association study (GWAS) data have revealed that detectable genetic mosaicism involving large (>2 Mb) structural autosomal alterations occurs in a fraction of individuals. We present results for a set of 24,849 genotyped individuals (total GWAS set II [TGSII]) in whom 341 large autosomal abnormalities were observed in 168 (0.68%) individuals. Merging data from the new TGSII set with data from two prior reports (the Gene-Environment Association Studies and the total GWAS set I) generated a large dataset of 127,179 individuals; we then conducted a meta-analysis to investigate the patterns of detectable autosomal mosaicism (n = 1,315 events in 925 [0.73%] individuals). Restricting to events >2 Mb in size, we observed an increase in event frequency as event size decreased. The combined results underscore that the rate of detectable mosaicism increases with age (p value = 5.5 × 10(-31)) and is higher in men (p value = 0.002) but lower in participants of African ancestry (p value = 0.003). In a subset of 47 individuals from whom serial samples were collected up to 6 years apart, complex changes were noted over time and showed an overall increase in the proportion of mosaic cells as age increased. Our large combined sample allowed for a unique ability to characterize detectable genetic mosaicism involving large structural events and strengthens the emerging evidence of non-random erosion of the genome in the aging population.
Assuntos
Aberrações Cromossômicas , Genoma Humano , Mosaicismo , Idoso , Feminino , Estudo de Associação Genômica Ampla , Genótipo , Humanos , Masculino , Pessoa de Meia-Idade , Neoplasias/genéticaRESUMO
Recurrent large-scale somatic copy number alterations (SCNAs), and somatic point mutations can be analysed to stratify patients with chronic lymphocytic leukaemia (CLL) into distinct prognostic groups. To investigate the relationship between SCNAs and somatic mutations, we performed whole-exome sequencing and single nucleotide polymorphism microarray analyses on 98 CLL patients from 40 families with a high burden of CLL. Overall, 69 somatic mutations in 29 CLL driver genes were detected among 45 subjects (46%), with the most frequently mutated genes being TP53 (8·2%), NOTCH1 (8·2%) and ATM (5·1%). Additionally, 142 SCNAs from 54 subjects (57%) were detected, including losses of chromosome 13q14 (28·9%), 11q (5·6%), 17p (2·1%), and gain of chromosome 12 (4·2%). We found that patients having both an adverse point mutation in a CLL driver gene and an unfavourable SCNA tended to have poorer survival (Hazard ratio [HR] = 3·17, 95% confidence interval [CI] = 0·97-10·35; P = 0·056) than patients having either a point mutation (HR = 1·34, 95%CI = 0·66-2·71; P = 0·42) or SCNAs (HR = 2·65, 95%CI = 0·77-9·13; P = 0·12). TP53 mutation carriers were associated with the poorest overall survival (HR = 4·39, 95%CI = 1·28-15·04; P = 0·018). Our study suggests that combining SCNA and mutational data could contribute to predicting outcome in familial CLL.
Assuntos
Cromossomos Humanos/genética , Variações do Número de Cópias de DNA , Leucemia Linfocítica Crônica de Células B/genética , Leucemia Linfocítica Crônica de Células B/mortalidade , Proteínas de Neoplasias/genética , Mutação Puntual , Intervalo Livre de Doença , Feminino , Humanos , Masculino , Taxa de SobrevidaRESUMO
Dyskeratosis congenita (DC) is an inherited bone marrow failure syndrome caused by germline mutations in telomere biology genes. Patients have extremely short telomeres for their age and a complex phenotype including oral leukoplakia, abnormal skin pigmentation, and dysplastic nails in addition to bone marrow failure, pulmonary fibrosis, stenosis of the esophagus, lacrimal ducts and urethra, developmental anomalies, and high risk of cancer. We evaluated a patient with features of DC, mood dysregulation, diabetes, and lack of pubertal development. Family history was not available but genome-wide genotyping was consistent with consanguinity. Whole exome sequencing identified 82 variants of interest in 80 genes based on the following criteria: homozygous, <0.1% minor allele frequency in public and in-house databases, nonsynonymous, and predicted deleterious by multiple in silico prediction programs. Six genes were identified likely contributory to the clinical presentation. The cause of DC is likely due to homozygous splice site variants in regulator of telomere elongation helicase 1, a known DC and telomere biology gene. A homozygous, missense variant in tryptophan hydroxylase 1 may be clinically important as this gene encodes the rate limiting step in serotonin biosynthesis, a biologic pathway connected with mood disorders. Four additional genes (SCN4A, LRP4, GDAP1L1, and SPTBN5) had rare, missense homozygous variants that we speculate may contribute to portions of the clinical phenotype. This case illustrates the value of conducting detailed clinical and genomic evaluations on rare patients in order to identify new areas of research into the functional consequences of rare variants and their contribution to human disease.
Assuntos
DNA Helicases/genética , Disceratose Congênita/etiologia , Transtornos do Humor/etiologia , Triptofano Hidroxilase/genética , Adolescente , Diabetes Mellitus Tipo 1/etiologia , Diabetes Mellitus Tipo 1/genética , Disceratose Congênita/genética , Homozigoto , Humanos , Hipotireoidismo/etiologia , Hipotireoidismo/genética , Masculino , Transtornos do Humor/tratamento farmacológico , Transtornos do Humor/genética , Fenótipo , Sequenciamento Completo do Genoma , Adulto JovemRESUMO
BACKGROUND: Diamond-Blackfan anaemia (DBA) is an inherited bone marrow failure syndrome (IBMFS) characterised by erythroid hypoplasia. It is associated with congenital anomalies and a high risk of developing specific cancers. DBA is caused predominantly by autosomal dominant pathogenic variants in at least 15 genes affecting ribosomal biogenesis and function. Two X-linked recessive genes have been identified. OBJECTIVES: We aim to identify the genetic aetiology of DBA. METHODS: Of 87 families with DBA enrolled in an institutional review board-approved cohort study (ClinicalTrials.gov Identifier:NCT00027274), 61 had genetic testing information available. Thirty-five families did not have a known genetic cause and thus underwent comprehensive genomic evaluation with whole exome sequencing, deletion and CNV analyses to identify their disease-associated pathogenic variant. Controls for functional studies were healthy mutation-negative individuals enrolled in the same study. RESULTS: Our analyses uncovered heterozygous pathogenic variants in two previously undescribed genes in two families. One family had a non-synonymous variant (p.K77N) in RPL35; the second family had a non-synonymous variant (p. L51S) in RPL18. Both of these variants result in pre-rRNA processing defects. We identified heterozygous pathogenic variants in previously known DBA genes in 16 of 35 families. Seventeen families who underwent genetic analyses are yet to have a genetic cause of disease identified. CONCLUSIONS: Overall, heterozygous pathogenic variants in ribosomal genes were identified in 44 of the 61 families (72%). De novo pathogenic variants were observed in 57% of patients with DBA. Ongoing studies of DBA genomics will be important to understand this complex disorder.
Assuntos
Anemia de Diamond-Blackfan/genética , Mutação/genética , Ribossomos/genética , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Criança , Pré-Escolar , Estudos de Coortes , Feminino , Genômica/métodos , Humanos , Lactente , Recém-Nascido , Masculino , Pessoa de Meia-Idade , Linhagem , Proteínas Ribossômicas/genética , Adulto JovemRESUMO
BACKGROUND: Lung adenocarcinoma (LUAD) is the most common histologic subtype of lung cancer and has a high risk of distant metastasis at every disease stage. We aimed to characterize the genomic landscape of LUAD and identify mutation signatures associated with tumor progression. METHODS AND FINDINGS: We performed an integrative genomic analysis, incorporating whole exome sequencing (WES), determination of DNA copy number and DNA methylation, and transcriptome sequencing for 101 LUAD samples from the Environment And Genetics in Lung cancer Etiology (EAGLE) study. We detected driver genes by testing whether the nonsynonymous mutation rate was significantly higher than the background mutation rate and replicated our findings in public datasets with 724 samples. We performed subclonality analysis for mutations based on mutant allele data and copy number alteration data. We also tested the association between mutation signatures and clinical outcomes, including distant metastasis, survival, and tumor grade. We identified and replicated two novel candidate driver genes, POU class 4 homeobox 2 (POU4F2) (mutated in 9 [8.9%] samples) and ZKSCAN1 (mutated in 6 [5.9%] samples), and characterized their major deleterious mutations. ZKSCAN1 was part of a mutually exclusive gene set that included the RTK/RAS/RAF pathway genes BRAF, EGFR, KRAS, MET, and NF1, indicating an important driver role for this gene. Moreover, we observed strong associations between methylation in specific genomic regions and somatic mutation patterns. In the tumor evolution analysis, four driver genes had a significantly lower fraction of subclonal mutations (FSM), including TP53 (p = 0.007), KEAP1 (p = 0.012), STK11 (p = 0.0076), and EGFR (p = 0.0078), suggesting a tumor initiation role for these genes. Subclonal mutations were significantly enriched in APOBEC-related signatures (p < 2.5×10-50). The total number of somatic mutations (p = 0.0039) and the fraction of transitions (p = 5.5×10-4) were associated with increased risk of distant metastasis. Our study's limitations include a small number of LUAD patients for subgroup analyses and a single-sample design for investigation of subclonality. CONCLUSIONS: These data provide a genomic characterization of LUAD pathogenesis and progression. The distinct clonal and subclonal mutation signatures suggest possible diverse carcinogenesis pathways for endogenous and exogenous exposures, and may serve as a foundation for more effective treatments for this lethal disease. LUAD's high heterogeneity emphasizes the need to further study this tumor type and to associate genomic findings with clinical outcomes.
Assuntos
Adenocarcinoma/genética , Metilação de DNA , Neoplasias Pulmonares/genética , Adenocarcinoma/etiologia , Adenocarcinoma/patologia , Adenocarcinoma/fisiopatologia , Adenocarcinoma de Pulmão , Adulto , Idoso , Exoma , Feminino , Genômica , Humanos , Itália , Neoplasias Pulmonares/etiologia , Neoplasias Pulmonares/patologia , Neoplasias Pulmonares/fisiopatologia , Masculino , Pessoa de Meia-Idade , Mutação , Estudos Retrospectivos , Fatores de RiscoRESUMO
Loss of 13q14.3 is a chromosomal event found in ~50% of B-cell chronic lymphocytic leukemia (CLL) and monoclonal B-cell lymphocytosis (MBL) cases. Surveys of somatic alterations in solid tumors have shown sporadic 13q14.3 loss in many different tumor types, but not at high frequency in any specific tumor type. In our recent survey of the single-nucleotide polymorphism (SNP) microarray data from 127 000 cancer-free or solid tumor cases, we observed mosaic 13q14.3 loss as common autosomal somatic large structural events (>2 Mb in size) in blood and buccal-derived DNA. Herein, we examined this region more closely investigating structural mosaic events <2 Mb using SNP microarray data in 46 254 non-hematologic cancer cases and 36 229 controls. We detected 60 individuals with 13q14.3 mosaic loss, 1 mosaic copy neutral uniparental disomy and 13 individuals with homozygosity. Although 13q14.3 loss size was variable, the minimally deleted region (MDR) (chr13: 49 590 000-49 983 100; GRCh36) was comparable to what is classically reported in MBL and CLL. Breakpoint analysis of the estimated boundaries reveals enrichment for genes and open chromatin. The frequency of 13q14.3 loss significantly increases with increasing age (P-value=0.028), but was not significantly different between non-hematological cancer cases and controls (0.084% versus 0.058%; P-value=0.19). These findings suggest that mosaic 13q14.3 losses accumulate with age. Individuals with detected mosaic 13q14.3 deletions may be early, undetected cases of MBL or CLL, but not necessarily all will develop MBL and CLL.
Assuntos
Deleção Cromossômica , Cromossomos Humanos Par 13 , Leucócitos/metabolismo , Mosaicismo , Neoplasias/genética , Adulto , Idoso , Idoso de 80 Anos ou mais , Estudos de Casos e Controles , Quebra Cromossômica , Variações do Número de Cópias de DNA , Feminino , Estudo de Associação Genômica Ampla , Genômica/métodos , Humanos , Masculino , Pessoa de Meia-Idade , Neoplasias/diagnóstico , Polimorfismo de Nucleotídeo ÚnicoRESUMO
Background: Mosaic loss of chromosome Y (mLOY) in leukocytes of men reflects genomic instability from aging, smoking, and environmental exposures. A similar mosaic loss of chromosome X (mLOX) occurs among women. However, the associations between mLOY, mLOX, and risk of incident heart diseases are unclear. Methods: We estimated associations between mLOY, mLOX, and risk of incident heart diseases requiring hospitalization, including atrial fibrillation, myocardial infarction, ischemic heart disease, cardiomyopathy, and heart failure. We analyzed 190,613 men and 224,853 women with genotyping data from the UK Biobank. Among these participants, we analyzed 37,037 men with mLOY and 13,978 women with mLOX detected using Mosaic Chromosomal Alterations caller. Multivariable Cox regression was used to estimate hazard ratios (HRs) and 95% confidence intervals (CIs) of each incident heart disease in relation to mLOY in men and mLOX in women. Additionally, Mendelian randomization (MR) was conducted to estimate causal associations. Results: Among men, detectable mLOY was associated with elevated risk of atrial fibrillation (HR=1.06, 95%CI:1.03-1.11). The associations were apparent in both never-smokers (HR=1.07, 95%:1.01-1.14) and ever-smokers (HR=1.05, 95%CI:1.01-1.11) as well as men > and ≤60 years of age. MR analyses supported causal associations between mLOY and atrial fibrillation (HRMR-PRESSO=1.15, 95%CI:1.13-1.18). Among post-menopausal women, we found a suggestive inverse association between detectable mLOX and atrial fibrillation risk (HR=0.90, 95%CI:0.83-0.98). However, associations with mLOY and mLOX were not found for other heart diseases. Conclusions: Our findings suggest that mLOY and mLOX reflect sex-specific biological processes or exposure profiles related to incident atrial fibrillation requiring hospitalization.
RESUMO
Chordoma is a rare bone cancer with variable clinical outcomes. Here, we recruited 184 sporadic chordoma patients from the US and Canada and collected their clinical and treatment data. The average age at diagnosis was 45.5 years (Range 5-78) and the chordoma site distribution was 49.2% clivus, 26.2% spinal, and 24.0% sacral. Most patients (97.5%) received surgery as the primary treatment, among whom 85.3% also received additional treatment. Except for the most prevalent cancers like prostate, lung, breast, and skin cancer, there was no discernible enrichment for any specific cancer type among patients or their family members. Among a subset of patients (N = 70) with tumor materials, we conducted omics analyses and obtained targeted panel sequencing and SNP array genotyping data for 51 and 49 patients, respectively. The most recurrent somatic driver mutations included PIK3CA (12%), followed by chromatin remodeling genes PBRM1 and SETD2. Amplification of the 6q27 region, containing the chordoma susceptibility gene TBXT, was detected in eight patients (16.3%). Clival patients appeared to be less likely to carry driver gene mutations, chromosome arm level deletion events (e.g., 5p, 5p, and 9p), or 6q27 amplification compared to sacral patients. After adjusting for age, sex, tumor site, and additional treatment, patients with somatic deletions of 14q (OR = 13.73, 95% CI 1.96-96.02, P = 0.008) and 18p (OR = 13.68, 95% CI 1.77-105.89, P = 0.012) were more likely to have persistent chordoma. The study highlights genomic heterogeneity in chordoma, potentially linked to location and clinical progression.