RESUMO
Yaks are crucial genetic resources in the Tibetan Plateau and surrounding regions. Throughout the long process of domestication, natural and artificial selection pressures have enabled yaks to demonstrate adaptive characteristics to the environment in terms of physiological structure and genetic molecules, but no systematic cell analysis has been carried out on this phenomenon of yaks. Here, the population structure and genetic diversity of yak were studied by WGRS, and the genes related to yak adaptability were excavated. Combined with scRNA-seq method, the transcription map of yak lung tissue and skin tissue was constructed, which provided a new comprehensive insight into yak adaptability. The analysis of yak population structure showed that there was obvious genetic differentiation between TZ _ yak and other seven yak populations, while there was significant genetic exchange between PL _ yak and SB _ yak at high altitude. WGRS and scRNA-seq analysis revealed that the gene HIF1A related to high altitude adaptation was expressed in various cell types, while EPAS1 was predominantly expressed in epithelial and endothelial cells of yak lung tissue. Endothelial cells play a critical role in hypoxia-adapted VEGF signaling, which correlates closely with the high expression of KDR and VEGFA genes in endothelial cells and monocytes. Furthermore, in the selection signal of High _ yak vs Low _ yak, 19.8 % of the genes overlapped with the genes screened by skin scRNA-seq, including genes related to coat color such as RORA, BNC2, and KIT. Notably, BNC2 is a gene associated with melanin deposition and shows high expression levels in HS cells. Additionally, GRN in melanocytes and SORT1 in IRS play an important role in cell communication between melanocytes and IRS. These findings offer new insights into the natural polymorphism of yaks and provide a valuable reference for future research on high-altitude mammals, and potentially even human genetics.
Assuntos
Adaptação Fisiológica , Animais , Bovinos/genética , Adaptação Fisiológica/genética , Altitude , Seleção Genética , Fatores de Transcrição Hélice-Alça-Hélice BásicosRESUMO
BACKGROUND: The hair follicle development process is regulated by sophisticated genes and signaling networks, and the hair grows from the hair follicle. The Tianzhu white yak population exhibits differences in hair length, especially on the forehead and shoulder region. However, the genetic mechanism is still unclear. Isoform sequencing (Iso-seq) technology with advantages in long reads sequencing. Hence, we combined the Iso-seq and RNA-seq methods to investigate the transcript complexity and difference between long-haired yak (LHY) and normal-haired yak (NHY). RESULTS: The hair length measurement result showed a significant difference between LHY and NHY on the forehead and the shoulder (P-value < 0.001). The skin samples from the forehead and the shoulder of LHY and NHY were pooled for isoform sequencing (Iso-seq). We obtained numerous long transcripts, including novel isoforms, long non-coding RNA, alternative splicing events, and alternative polyadenylation events. Combined with RNA-seq data, we performed differential isoforms (DEIs) analysis between LHY and NHY. We found that some hair follicle and skin development-related DEIs, like BMP4, KRT2, IGF2R, and COL1A2 in the forehead skin; BMP1, KRT1, FGF5, COL2A1, and IGFBP5 in the shoulder skin. Enrichment analysis revealed that DEIs in both two comparable groups significantly participated in skin and hair follicle development-related pathways, like ECM-receptor interaction, focal adhesion, and PI3K-Akt signaling pathways. The results indicated that the hair follicle development of Tianzhu white yak may influence the hair length difference. Besides, the protein-protein interaction (PPI) network of DEIs showed COL2A1 and COL3A1 exhibited a high degree of centrality, and these two genes were suggested as potential candidates for the hair length growth of Tianzhu white yak. CONCLUSIONS: The results provided a comprehensive analysis of the transcriptome complexity and identified differential transcripts that enhance our understanding of the molecular mechanisms underlying the variation in hair length growth in Tianzhu white yak.
Assuntos
Cabelo , Isoformas de Proteínas , RNA-Seq , Pele , Transcriptoma , Animais , Bovinos/genética , Pele/metabolismo , Cabelo/metabolismo , Cabelo/crescimento & desenvolvimento , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Folículo Piloso/metabolismo , Folículo Piloso/crescimento & desenvolvimento , Perfilação da Expressão Gênica , Processamento Alternativo , Análise de Sequência de RNARESUMO
SARS-CoV-2 constantly circulates and evolves worldwide, generating many variants and posing a menace to global health. It is urgently needed to discover effective medicines to treat the disease caused by SARS-CoV-2 and its variants. An established target for anti-SARS-CoV-2 drug discovery is the main protease (Mpro), since it exerts an irreplaceable action in viral life cycle. CCF0058981, derived from ML300, is a non-covalent inhibitor that exhibits low nanomolar potency against SARS-CoV-2 Mpro and submicromolar anti-SARS-CoV-2 activity, thereby providing a valuable starting point for drug design. However, structural basis underlying inhibition of SARS-CoV-2 Mpro by CCF0058981 remains undetermined. In this study, the crystal structures of CCF0058981 in complex with two SARS-CoV-2 Mpro mutants (M49I and V186F), which have been identified in the recently emerged Omicron subvariants, were solved. Structural analysis defined the pivotal molecular factors responsible for the interactions between CCF0058981 and these two Mpro mutants, and revealed the binding modes of CCF0058981 to Mpro M49I and V186F mutants. These data not only provide structural insights for SARS-CoV-2 Mpro inhibition by CCF0058981, but also add to develop effective broad-spectrum drugs against SARS-CoV-2 as well as its variants.
Assuntos
COVID-19 , SARS-CoV-2 , Humanos , SARS-CoV-2/genética , SARS-CoV-2/metabolismo , Antivirais/farmacologia , Antivirais/química , Inibidores de Proteases/química , Proteínas não Estruturais Virais/química , Simulação de Acoplamento MolecularRESUMO
The SARS-CoV-2 coronavirus is characterized by high mutation rates and significant infectivity, posing ongoing challenges for therapeutic intervention. To address potential challenges in the future, the continued development of effective drugs targeting SARS-CoV-2 remains an important task for the scientific as well as the pharmaceutical community. The main protease (Mpro) of SARS-CoV-2 is an ideal therapeutic target for COVID-19 drug development, leading to the introduction of various inhibitors, both covalent and non-covalent, each characterized by unique mechanisms of action and possessing inherent strengths and limitations. Natural products, being compounds naturally present in the environment, offer advantages such as low toxicity and diverse activities, presenting a viable source for antiviral drug development. Here, we identified a natural compound, rosmarinic acid, which exhibits significant inhibitory effects on the Mpro of the SARS-CoV-2. Through detailed structural biology analysis, we elucidated the precise crystal structure of the complex formed between rosmarinic acid and SARS-CoV-2 Mpro, revealing the molecular basis of its inhibitory mechanism. These findings not only enhance our understanding of the antiviral action of rosmarinic acid, but also provide valuable structural information and mechanistic insights for the further development of therapeutic strategies against SARS-CoV-2.
Assuntos
Antivirais , Cinamatos , Proteases 3C de Coronavírus , Depsídeos , Ácido Rosmarínico , SARS-CoV-2 , Depsídeos/química , Depsídeos/farmacologia , Cinamatos/química , Cinamatos/farmacologia , SARS-CoV-2/efeitos dos fármacos , SARS-CoV-2/enzimologia , Proteases 3C de Coronavírus/antagonistas & inibidores , Proteases 3C de Coronavírus/química , Proteases 3C de Coronavírus/metabolismo , Humanos , Antivirais/farmacologia , Antivirais/química , Inibidores de Proteases/química , Inibidores de Proteases/farmacologia , Modelos Moleculares , Cristalografia por Raios X , Tratamento Farmacológico da COVID-19 , COVID-19/virologia , Sítios de Ligação , Ligação ProteicaRESUMO
Recurrent epidemics of coronaviruses have posed significant threats to human life and health. The mortality rate of patients infected with the Middle East Respiratory Syndrome Coronavirus (MERS-CoV) is 35 %. The main protease (Mpro) plays a crucial role in the MERS-CoV life cycle, and Mpro exhibited a high degree of conservation among different coronaviruses. Therefore inhibition of Mpro has become an effective strategy for the development of broad-spectrum anti-coronaviral drugs. The inhibition of SARS-CoV-2 Mpro by the anti-tumor drug carmofur has been revealed, but structural studies of carmofur in complex with Mpro from other types of coronavirus have not been reported. Hence, we revealed the structure of the MERS-CoV Mpro-carmofur complex, analysed the structural basis for the binding of carmofur to MERS-CoV Mpro in detail, and compared the binding patterns of carmofur to Mpros of two different coronaviruses, MERS-CoV and SARS-CoV-2. Considering the importance of Mpros for coronavirus therapy, structural understanding of Mpro inhibition by carmofur could contribute to the design and development of novel antiviral drugs with safe and broad-spectrum efficacy.
RESUMO
The main protease (M pro) of coronaviruses plays a key role in viral replication, thus serving as a hot target for drug design. PF-00835231 is a promising inhibitor of SARS-CoV-2 M pro. Here, we report the inhibitory potency of PF-00835231 against SARS-CoV-2 M pro and seven M pro mutants (G15S, M49I, Y54C, K90R, P132H, S46F, and V186F) from SARS-CoV-2 variants. The results confirm that PF-00835231 has broad-spectrum inhibition against various coronaviral M pros. In addition, the crystal structures of SARS-CoV-2 M pro, SARS-CoV M pro, MERS-CoV M pro, and seven SARS-CoV-2 M pro mutants (G15S, M49I, Y54C, K90R, P132H, S46F, and V186F) in complex with PF-00835231 are solved. A detailed analysis of these structures reveals key determinants essential for inhibition and elucidates the binding modes of different coronaviral M pros. Given the importance of the main protease for the treatment of coronaviral infection, structural insights into M pro inhibition by PF-00835231 can accelerate the design of novel antivirals with broad-spectrum efficacy against different human coronaviruses.
RESUMO
The high mutation rate of COVID-19 and the prevalence of multiple variants strongly support the need for pharmacological options to complement vaccine strategies. One region that appears highly conserved among different genera of coronaviruses is the substrate-binding site of the main protease (Mpro or 3CLpro), making it an attractive target for the development of broad-spectrum drugs for multiple coronaviruses. PF-07321332, developed by Pfizer, is the first orally administered inhibitor targeting the main protease of SARS-CoV-2, which also has shown potency against other coronaviruses. Here, we report three crystal structures of the main protease of SARS-CoV-2, SARS-CoV, and Middle East respiratory syndrome (MERS)-CoV bound to the inhibitor PF-07321332. The structures reveal a ligand-binding site that is conserved among SARS-CoV-2, SARS-CoV, and MERS-CoV, providing insights into the mechanism of inhibition of viral replication. The long and narrow cavity in the cleft between domains I and II of the main protease harbors multiple inhibitor-binding sites, where PF-07321332 occupies subsites S1, S2, and S4 and appears more restricted than other inhibitors. A detailed analysis of these structures illuminated key structural determinants essential for inhibition and elucidated the binding mode of action of the main proteases from different coronaviruses. Given the importance of the main protease for the treatment of SARS-CoV-2 infection, insights derived from this study should accelerate the design of safer and more effective antivirals. IMPORTANCE The current pandemic of multiple variants has created an urgent need for effective inhibitors of SARS-CoV-2 to complement vaccine strategies. PF-07321332, developed by Pfizer, is the first orally administered coronavirus-specific main protease inhibitor approved by the FDA. We solved the crystal structures of the main protease of SARS-CoV-2, SARS-CoV, and MERS-CoV that bound to the PF-07321332, suggesting PF-07321332 is a broad-spectrum inhibitor for coronaviruses. Structures of the main protease inhibitor complexes present an opportunity to discover safer and more effective inhibitors for COVID-19.
Assuntos
Lactamas , Leucina , Nitrilas , Peptídeo Hidrolases , Prolina , Antivirais/química , Antivirais/metabolismo , Humanos , Lactamas/química , Lactamas/metabolismo , Leucina/química , Leucina/metabolismo , Coronavírus da Síndrome Respiratória do Oriente Médio/química , Coronavírus da Síndrome Respiratória do Oriente Médio/enzimologia , Nitrilas/química , Nitrilas/metabolismo , Peptídeo Hidrolases/química , Peptídeo Hidrolases/metabolismo , Prolina/química , Prolina/metabolismo , Inibidores de Proteases/química , Inibidores de Proteases/metabolismo , Coronavírus Relacionado à Síndrome Respiratória Aguda Grave/química , Coronavírus Relacionado à Síndrome Respiratória Aguda Grave/enzimologia , SARS-CoV-2/química , SARS-CoV-2/enzimologia , Tratamento Farmacológico da COVID-19RESUMO
Over the past 20 years, the severe acute respiratory syndrome coronavirus (SARS-CoV), Middle East respiratory syndrome CoV (MERS-CoV), and SARS-CoV-2 emerged, causing severe human respiratory diseases throughout the globe. Developing broad-spectrum drugs would be invaluable in responding to new, emerging coronaviruses and to address unmet urgent clinical needs. Main protease (Mpro; also known as 3CLpro) has a major role in the coronavirus life cycle and is one of the most important targets for anti-coronavirus agents. We show that a natural product, noncovalent inhibitor, shikonin, is a pan-main protease inhibitor of SARS-CoV-2, SARS-CoV, MERS-CoV, human coronavirus (HCoV)-HKU1, HCoV-NL63, and HCoV-229E with micromolar half maximal inhibitory concentration (IC50) values. Structures of the main protease of different coronavirus genus, SARS-CoV from the betacoronavirus genus and HCoV-NL63 from the alphacoronavirus genus, were determined by X-ray crystallography and revealed that the inhibitor interacts with key active site residues in a unique mode. The structure of the main protease inhibitor complex presents an opportunity to discover a novel series of broad-spectrum inhibitors. These data provide substantial evidence that shikonin and its derivatives may be effective against most coronaviruses as well as emerging coronaviruses of the future. Given the importance of the main protease for coronavirus therapeutic indication, insights from these studies should accelerate the development and design of safer and more effective antiviral agents. IMPORTANCE The current pandemic has created an urgent need for broad-spectrum inhibitors of SARS-CoV-2. The main protease is relatively conservative compared to the spike protein and, thus, is one of the most promising targets in developing anti-coronavirus agents. We solved the crystal structures of the main protease of SARS-CoV and HCoV-NL63 that bound to shikonin. The structures provide important insights, have broad implications for understanding the structural basis underlying enzyme activity, and can facilitate rational design of broad-spectrum anti-coronavirus ligands as new therapeutic agents.
Assuntos
Antivirais/química , Proteases 3C de Coronavírus/antagonistas & inibidores , Inibidores de Proteases/química , Domínio Catalítico , Coronavirus/classificação , Coronavirus/enzimologia , Proteases 3C de Coronavírus/química , Cristalografia por Raios X , Simulação de Acoplamento Molecular , Naftoquinonas/química , Ligação ProteicaRESUMO
Main protease (M pro) serves as an indispensable factor in the life cycle of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) as well as its constantly emerging variants and is therefore considered an attractive target for antiviral drug development. Benzothiazole-based inhibitors targeting M pro have recently been investigated by several groups and proven to be promising leads for coronaviral drug development. In the present study, we determine the crystal structures of a benzothiazole-based inhibitor, YH-53, bound to M pro mutants from SARS-CoV-2 variants of concern (VOCs) or variants of interest (VOIs), including K90R (Beta, B.1.351), G15S (Lambda, C.37), Y54C (Delta, AY.4), M49I (Omicron, BA.5) and P132H (Omicron, B.1.1.529). The structures show that the benzothiazole group in YH-53 forms a C-S covalent bond with the sulfur atom of catalytic residue Cys145 in SARS-CoV-2 M pro mutants. Structural analysis reveals the key molecular determinants necessary for interaction and illustrates the binding mode of YH-53 to these mutant M pros. In conclusion, structural insights from this study offer more information to develop benzothiazole-based drugs that are broader spectrum, more effective and safer.
Assuntos
COVID-19 , SARS-CoV-2 , Humanos , SARS-CoV-2/genética , SARS-CoV-2/metabolismo , Inibidores de Proteases/química , Cisteína Endopeptidases/genética , Cisteína Endopeptidases/metabolismo , Antivirais/farmacologia , Benzotiazóis , Simulação de Acoplamento MolecularRESUMO
BACKGROUND: The hair coat is available for the yak to live in the harsh environment of the plateau. Besides, improving the hair production of yak is necessary for its textile industry development. Hair grows from hair follicles (HFs). The HFs undergo periodic growth after birth and are regulated by the complex gene regulatory network. However, the molecular mechanism of HFs regeneration in the Tianzhu white yak remains unclear. RNA editing is a post-transcriptional mechanism that regulates gene expression and produces new transcripts. Hence, we investigated the influence of the A-to-I RNA editing events on the HFs cycle of the Tianzhu white yak. RESULTS: We finally identified 54,707 adenosine-to-inosine (A-to-I) RNA editing sites (RESs) from RNA sequencing data of the HFs cycle in the Tianzhu white yak. Annotation results showed RESs caused missense amino acid changes in 7 known genes. And 202 A-to-I editing sites altered 23 target genes of 140 microRNAs. A total of 1,722 differential RESs were identified during the HFs cycle of Tianzhu white yak. GO and KEGG enrichment analysis revealed several signaling pathways and GO terms involved skin development, hair growth, and HFs cycle. Such as genes with differential RNA editing levels were significantly enriched in the peroxisome, metabolic pathways, Notch signaling pathway, and PPAR signaling pathway. Besides, the editing sites in HFs development-related genes FAS, APCDD1, WWOX, MPZL3, RUNX1, KANK2, DCN, DSC2, LEPR, HEPHL1, and PTK2B were suggested as the potential RESs involving HFs development. CONCLUSION: This study investigated the global A-to-I RNA editing events during the HFs cycle of yak skin tissue and expanded the knowledge of A-to-I RNA editing on the HFs cycle. Furthermore, this study revealed that RNA editing-influenced genes may regulate the HFs cycle by participating in the HFs development-related pathways. The findings might provide new insight into the regulation of RNA editing in hair growth.
Assuntos
Folículo Piloso , Edição de RNA , Animais , Bovinos/genética , Genoma , Análise de Sequência de RNA , Redes Reguladoras de GenesRESUMO
PARP15, or ARTD7, is an enzyme carrying out mono-ADP-ribosylation and regulating activities of a range of cellular proteins. This enzyme belongs to the family of the poly(ADP-ribose) polymerases (PARPs), which comprises of proteins with various potential disease indications. Due to their involvement in a number of cellular processes and important role in DNA repair and regulation, PARPs have been considered attractive therapeutic targets over the past few years. The pursuit of small molecule PARP inhibitors has resulted in several FDA approved drugs for multiple cancers so far. As the use of PARP inhibitors as drug scaffolds is actively explored recently, there is increasing interest in the design of selective inhibitors based on the structural features of the PARP proteins. Here, we solved high-resolution crystal structures of the human PARP15 catalytic domain in complex with three marketed drugs of PARP inhibitors, which includes compounds 3-AB, iniparib and niraparib. The structures reported here contribute to our understanding of the ligand binding modes and structural features in the PARP15 catalytic domain, which can be employed to guide the rational design of selective inhibitors of PARPs.
Assuntos
Inibidores de Poli(ADP-Ribose) Polimerases , Poli(ADP-Ribose) Polimerases , ADP Ribose Transferases/antagonistas & inibidores , Domínio Catalítico , Humanos , Inibidores de Poli(ADP-Ribose) Polimerases/química , Inibidores de Poli(ADP-Ribose) Polimerases/farmacologia , Poli(ADP-Ribose) Polimerases/metabolismoRESUMO
Objective: This study aims to observe the changes in pupil diameter (PD) after anesthesia with different doses of sufentanil with the ultrasound method and observe whether pupil contraction is correlated with hemodynamic changes and bispectral index (BIS) values. Methods: A total of 124 patients between the ages of 18-65 with ASA I-II undergoing general anesthesia for surgery were enrolled in the study. According to the sufentanil dose initially injected, they were randomly divided into groups P, S1, S2, and S3, with 31 cases in each group. Group P was injected with normal saline. Group S1 was injected with 0.2 µg/kg of sufentanil. Group S2 was injected with 0.4 µg/kg of sufentanil. Group S3 was injected with 0.6 µg/kg of sufentanil. Following propofol administration and eye closure, the pupil diameter (PD) of the patients in the four groups was observed and measured by ultrasound after the loss of consciousness (T1) and within 3 min after the sufentanil injection at an interval of 30 s (30 s (T2), 1 min (T3), 1 min 30 s (T4), 2 min (T5), 2 min 30 s (T6), and 3 min (T7)). PD, systolic blood pressure (SBP), diastolic blood pressure (DBP), heart rate (HR), and BIS values at T1-T7 were recorded. Results: The ultrasonic method was used to observe that different doses of sufentanil could make the patients' pupils contract. During anesthesia induction, the changes in PD have a positive correlation with SBP, DBP, HR, and BIS values. Conclusion: Ultrasound can become a new noninvasive method to monitor pupil changes during general anesthesia, and ultrasonic observation of pupil changes has great potential for individualized analgesia management in the perioperative period.
Assuntos
Propofol , Sufentanil , Adolescente , Adulto , Idoso , Anestesia Geral/métodos , Pressão Sanguínea , Hemodinâmica , Humanos , Pessoa de Meia-Idade , Sufentanil/farmacologia , Adulto JovemRESUMO
Main proteases (Mpros) are a class of conserved cysteine hydrolases among coronaviruses and play a crucial role in viral replication. Therefore, Mpros are ideal targets for the development of pan-coronavirus drugs. X77, previously developed against SARS-CoV Mpro, was repurposed as a non-covalent tight binder inhibitor against SARS-CoV-2 Mpro during COVID-19 pandemic. Many novel inhibitors with favorable efficacy have been discovered using X77 as a reference, suggesting that X77 could be a valuable scaffold for drug design. However, the broad-spectrum performance of X77 and underlying mechanism remain less understood. Here, we reported the crystal structures of Mpros from SARS-CoV-2, SARS-CoV, and MERS-CoV, and several Mpro mutants from SARS-CoV-2 variants bound to X77. A detailed analysis of these structures revealed key structural determinants essential for interaction and elucidated the binding modes of X77 with different coronaviral Mpros. The potencies of X77 against these investigated Mpros were further evaluated through molecular dynamic simulation and binding free energy calculation. These data provide molecular insights into broad-spectrum inhibition against coronaviral Mpros by X77 and the similarities and differences of X77 when bound to various Mpros, which will promote X77-based design of novel antivirals with broad-spectrum efficacy against different coronaviruses and SARS-CoV-2 variants.
Assuntos
Proteases 3C de Coronavírus , Simulação de Dinâmica Molecular , SARS-CoV-2 , SARS-CoV-2/enzimologia , SARS-CoV-2/efeitos dos fármacos , Cristalografia por Raios X , Proteases 3C de Coronavírus/antagonistas & inibidores , Proteases 3C de Coronavírus/química , Proteases 3C de Coronavírus/metabolismo , Antivirais/química , Antivirais/farmacologia , Humanos , Ligação Proteica , Inibidores de Proteases/química , Inibidores de Proteases/farmacologia , COVID-19/virologia , Coronavírus Relacionado à Síndrome Respiratória Aguda Grave/enzimologia , Betacoronavirus/enzimologia , Betacoronavirus/efeitos dos fármacos , Coronavírus da Síndrome Respiratória do Oriente Médio/enzimologia , Coronavírus da Síndrome Respiratória do Oriente Médio/efeitos dos fármacos , Cisteína Endopeptidases/química , Cisteína Endopeptidases/metabolismo , Proteínas não Estruturais Virais/química , Proteínas não Estruturais Virais/antagonistas & inibidores , Proteínas não Estruturais Virais/metabolismo , Sítios de Ligação , Infecções por Coronavirus/virologia , Infecções por Coronavirus/tratamento farmacológico , Pandemias , Pneumonia Viral/virologia , Pneumonia Viral/tratamento farmacológicoRESUMO
The main protease (Mpro) of coronaviruses participates in viral replication, serving as a hot target for drug design. GC376 is able to effectively inhibit the activity of Mpro, which is due to nucleophilic addition of GC376 by binding covalently with Cys145 in Mpro active site. Here, we used fluorescence resonance energy transfer (FRET) assay to analyze the IC50 values of GC376 against Mpros from six different coronaviruses (SARS-CoV-2, HCoV-229E, HCoV-HUK1, MERS-CoV, SARS-CoV, HCoV-NL63) and five Mpro mutants (G15S, M49I, K90R, P132H, S46F) from SARS-CoV-2 variants. The results showed that GC376 displays effective inhibition to various coronaviral Mpros and SARS-CoV-2 Mpro mutants. In addition, the crystal structures of SARS-CoV-2 Mpro (wide type)-GC376, SARS-CoV Mpro-GC376, MERS-CoV Mpro-GC376, and SARS-CoV-2 Mpro mutants (G15S, M49I, S46F, K90R, and P132H)-GC376 complexes were solved. We found that GC376 is able to fit into the active site of Mpros from different coronaviruses and different SARS-CoV-2 variants properly. Detailed structural analysis revealed key molecular determinants necessary for inhibition and illustrated the binding patterns of GC376 to these different Mpros. In conclusion, we not only proved the inhibitory activity of GC376 against different Mpros including SARS-CoV-2 Mpro mutants, but also revealed the molecular mechanism of inhibition by GC376, which will provide scientific guidance for the development of broad-spectrum drugs against SARS-CoV-2 as well as other coronaviruses.
Assuntos
Antivirais , Proteases 3C de Coronavírus , Coronavirus , Lactamas , Leucina , Ácidos Sulfônicos , Humanos , Antivirais/química , Antivirais/farmacologia , Coronavirus/efeitos dos fármacos , Coronavirus/enzimologia , Lactamas/farmacologia , Leucina/análogos & derivados , SARS-CoV-2/enzimologia , Ácidos Sulfônicos/farmacologia , Proteases 3C de Coronavírus/antagonistas & inibidores , Proteases 3C de Coronavírus/químicaRESUMO
Globally, the continuous spread and evolution of SARS-CoV-2, along with its variants, profoundly impact human well-being, health, security, and the growth of socio-economic. In the field of development of drugs against COVID-19, the main protease (Mpro) is a critical target as it plays a core role in the lifecycle of SARS-CoV-2. Bofutrelvir acts as a potent inhibitor of SARS-CoV-2 Mpro, demonstrating high efficacy and broad-spectrum antiviral activity. Compared to therapies that require pharmacokinetic boosters, such as ritonavir, the monotherapy approach of Bofutrelvir reduces the risk of potential drug interactions, making it suitable for a wider patient population. However, further studies on the potency and mechanism of inhibition of Bofutrelvir against the Mpro of COVID-19 and its variants, together with other coronaviruses, are needed to prepare for the possibility of a possible re-emerging threat from an analogous virus in the future. Here, we reveal the effective inhibition of Bofutrelvir against the Mpro of SARS-CoV-2, SARS-CoV, and HCoV-229E through FRET and crystallographic analysis. Furthermore, the inhibitory mechanisms of Bofutrelvir against two SARS-CoV-2 Mpro mutants (G15S and K90R) were also elucidated through FRET and crystallographic studies. Through detailed analysis and comparison of these crystal structures, we identified crucial structural determinants of inhibition and elucidated the binding mode of Bofutrelvir to Mpros from different coronaviruses. These findings are hopeful to accelerate the development of safer and more potent inhibitors against the Mpro of coronavirus, and to provide important references for the prevention and treatment of similar viruses that may emerge in the future.
RESUMO
Preventing the spread of SARS-CoV-2 and its variants is crucial in the fight against COVID-19. Inhibition of the main protease (Mpro) of SARS-CoV-2 is the key to disrupting viral replication, making Mpro a promising target for therapy. PF-07321332 and shikonin have been identified as effective broad-spectrum inhibitors of SARS-CoV-2 Mpro. The crystal structures of SARS-CoV-2 Mpro bound to PF-07321332 and shikonin have been resolved in previous studies. However, the exact mechanism regarding how SARS-CoV-2 Mpro mutants impact their binding modes largely remains to be investigated. In this study, we expressed a SARS-CoV-2 Mpro mutant, carrying the D48N substitution, representing a class of mutations located near the active sites of Mpro. The crystal structures of Mpro D48N in complex with PF-07321332 and shikonin were solved. A detailed analysis of the interactions between Mpro D48N and two inhibitors provides key insights into the binding pattern and its structural determinants. Further, the binding patterns of the two inhibitors to Mpro D48N mutant and wild-type Mpro were compared in detail. This study illustrates the possible conformational changes when the Mpro D48N mutant is bound to inhibitors. Structural insights derived from this study will inform the development of new drugs against novel coronaviruses.
Assuntos
Proteases 3C de Coronavírus , Naftoquinonas , SARS-CoV-2 , Lactamas , Leucina , Naftoquinonas/farmacologia , Nitrilas , SARS-CoV-2/efeitos dos fármacos , SARS-CoV-2/genética , Proteases 3C de Coronavírus/antagonistas & inibidoresRESUMO
There is an urgent need to develop effective antiviral drugs to prevent the viral infection caused by constantly circulating SARS-CoV-2 as well as its variants. The main protease (Mpro) of SARS-CoV-2 is a salient enzyme that plays a vital role in viral replication and serves as a fascinating therapeutic target. PF-07304814 is a covalent inhibitor targeting SARS-CoV-2 Mpro with favorable inhibition potency and drug-like properties, thus making it a promising drug candidate for the treatment of COVID-19. We previously solved the structure of PF-07304814 in complex with SARS-CoV-2 Mpro. However, the binding modes of PF-07304814 with Mpros from evolving SARS-CoV-2 variants is under-determined. In the current study, we expressed six Mpro mutants (G15S, K90R, M49I, S46F, V186F, and Y54C) that have been identified in Omicron variants including the recently emerged XBB.1.16 subvariant and solved the crystal structures of PF-07304814 bound to Mpro mutants. Structural analysis provided insight into the key molecular determinants responsible for the interaction between PF-07304814 and these mutant Mpros. Patterns for PF-07304814 to bind with these investigated Mpro mutants and the wild-type Mpro are generally similar but with some differences as revealed by detailed structural comparison. Structural insights presented in this study will inform the development of novel drugs against SARS-CoV-2 and the possible conformation changes of Mpro mutants when bound to an inhibitor.
RESUMO
Main protease (Mpro) is a highly conserved cysteine protease that plays a vital role in the replication of coronaviruses, making it an attractive pan-coronaviral therapeutic target. Ensitrelvir (S-217622), developed by Shionogi, is the first orally active non-covalent, non-peptidic SARS-CoV-2 Mpro inhibitor, which also displays antiviral efficacy against other human coronaviruses as well as SARS-CoV-2 variants of concern (VOCs) and variants of interest (VOIs). Here, we report the crystal structures of the main proteases from SARS-CoV-2, SARS-CoV-2 VOC/VOIs, SARS-CoV, MERS-CoV, and HCoV-NL63 bound to the inhibitor S-217622. A detailed analysis of these structures illuminates key structural determinants essential for inhibition and elucidates the binding modes of the main proteases from different coronaviruses. Given the importance of the main protease for the treatment of coronaviral infection, structural insights obtained from this study could accelerate the design of novel antivirals with broad-spectrum efficacy against different human coronaviruses.
Assuntos
COVID-19 , SARS-CoV-2 , Humanos , SARS-CoV-2/metabolismo , Inibidores de Proteases/química , Antivirais/química , Peptídeo HidrolasesRESUMO
BACKGROUND: Glioma is the most common malignant tumor of the central nervous system, with high heterogeneity, strong invasiveness, high therapeutic resistance, and poor prognosis, comprehending a serious challenge in neuro-oncology. Until now, the mechanisms underlying glioma progression have not been fully elucidated. METHODS: The expression of DExH-box helicase 9 (DHX9) in tissues and cells was detected by qRT-PCR and western blot. EdU and transwell assays were conducted to assess the effect of DHX9 on proliferation, migration and invasion of glioma cells. Cocultured model was used to evaluate the role of DHX9 on macrophages recruitment and polarization. Animal study was performed to explore the role of DHX9 on macrophages recruitment and polarization in vivo. Bioinformatics analysis, dual-luciferase reporter assay and chromatin immunoprecipitation (ChIP)-qPCR assay was used to explore the relation between DHX9 and TCF12/CSF1. RESULTS: DHX9 was elevated in gliomas, especially in glioblastoma multiforme (GBM). Besides promoting the proliferation, migration, and invasion of glioma cells, DHX9 facilitated the infiltration of macrophages into glioma tissues and polarization to M2-like macrophages, known as tumor-associated macrophages (TAMs). DHX9 silencing decreased the expression of colony-stimulating factor 1 (CSF1), which partially restored the inhibitory effect on malignant progress of glioma and infiltration of TAMs caused by DHX9 knockdown by targeting the transcription factor 12 (TCF12). Moreover, TCF12 could directly bind to the promoter region of CSF1. CONCLUSION: DHX9/TCF12/CSF1 axis regulated the increases in the infiltration of TAMs to promote glioma progression and might be a novel potential target for future immune therapies against gliomas.
Assuntos
Glioma , Macrófagos Associados a Tumor , Animais , Linhagem Celular Tumoral , Proliferação de Células/genética , Proliferação de Células/fisiologia , Regulação Neoplásica da Expressão Gênica , Glioblastoma/genética , Glioblastoma/imunologia , Glioblastoma/patologia , Glioma/genética , Glioma/imunologia , Glioma/patologia , Macrófagos/imunologia , Macrófagos/patologia , Macrófagos Associados a Tumor/imunologia , Macrófagos Associados a Tumor/patologia , HumanosRESUMO
OBJECTIVES: Open power morcellation during a laparoscopic myomectomy (LM) can result in the dissemination of benign or occult malignant tumor cells in the abdominopelvic cavity. The development of a new contained collection bag for power morcellation is now favored by gynecologic surgeons worldwide. MATERIAL AND METHODS: This study was a single-arm trial comprising 20 women who consecutively underwent an LM involving the use of a newly designed contained collection bag for power morcellation between November 3rd 2017 and April 31st 2018. There was also a historical control group consisting of 30 women who underwent open power morcellation during an LM between May 1st 2017 and October 31st 2017. All the essential information concerning the patients and surgically related data, including the myoma size, the operation duration, and the cell count of the intraperitoneal irrigating fluid, were collected and analyzed. RESULTS: The uterus size and the maximum diameters of the uterus and the myoma of the two groups were not significantly different (p = 0.65, p = 0.71, and p = 0.31, respectively). Pseudopneumoperitoneum was established and clear visualization was guaranteed in all 20 cases in the experimental group. The remaining fragment tissue amount (mean ± SD) and weight (mean ± SD) in the collection bag after morcellation in the experimental group were 5.00 ± 1.48 and 3.87 ± 1.31 (g). All the collection bags were routinely examined after the LM using normal saline, and no leaks or lesions were found. The cell counts of the intraperitoneal irrigating fluid both before and after morcellation were less than 105-106/L. The pathology of all the tissues confirmed that there were no malignant tumors. The operation of the experimental group was 18 mins longer than that of the historical control group (p = 0.00). CONCLUSIONS: This newly designed collection bag system for LM morcellation is effective, feasible, and safe.