RESUMO
Antimicrobial resistance has become a serious threat to the global public health. Accurate and rapid antimicrobial susceptibility testing (AST) allows evidence-based prescribing of antibiotics to improve patient care and clinical outcomes. Current culture-based AST assays are inherently limited by the doubling time of bacterial reproduction, which require at least 24 h to have a decisive result. Herein, a label-free electrical impedance-based microfluidic platform designed to expedite and streamline AST procedure for clinical practice is presented. Following a 30-min exposure of bacterial samples to antibiotics, the presented high-throughput, single-bacterium level impedance characterization platform enables a rapid 2-min AST assay. The platform facilitates accurate analysis of individual bacterial viability, as indicated by changes in electrical characteristics, thereby enabling the determination of antimicrobial resistance. Moreover, the potential clinical applicability of this platform is demonstrated by testing different E. coli strains against five antibiotics, yielding 100% categorical agreements compared to standard culture methods.
Assuntos
Escherichia coli , Microfluídica , Humanos , Impedância Elétrica , Testes de Sensibilidade Microbiana , Antibacterianos/farmacologia , BactériasRESUMO
Photocatalytic overall splitting of pure water (H2O) without sacrificial reagent to hydrogen (H2) and oxygen (O2) holds a great potential for achieving carbon neutrality. Herein, by anchoring cobalt sulfide (Co9S8) as cocatalyst and cadmium sulfide (CdS) as light absorber to channel wall of a porous polymer microreactor (PP12), continuous violent H2 and O2 bubbling productions from photocatalytic overall splitting of pure H2O without sacrificial reagent is achieved, with H2 and O2 production rates as high as 4.41 and 2.20 mmol h-1 gcat.-1 respectively. These are significantly enhanced than those in the widely used stirred tank-type reactor in which no O2 is produced and H2 production rate is only 0.004 mmol h-1 gcat.-1. Besides improved charge separation and interaction of H2O with photocatalyst in PP12, bonding interaction of Co9S8 with PP12 creates abundant catalytic active sites for simultaneous productions of H2 and O2, thus leading to the significantly enhanced H2 and O2 bubbling productions in PP12. This offers a new strategy to enhance photocatalytic overall splitting of pure H2O without sacrificial reagent.
RESUMO
Unique structure representation of polymers plays a crucial role in developing models for polymer property prediction and polymer design by data-centric approaches. Currently, monomer and repeating unit (RU) approximations are widely used to represent polymer structures for generating feature descriptors in the modeling of quantitative structure-property relationships (QSPR). However, such conventional structure representations may not uniquely approximate heterochain polymers due to the diversity of monomer combinations and the potential multi-RUs. In this study, the so-called ring repeating unit (RRU) method that can uniquely represent polymers with a broad range of structure diversity is proposed for the first time. As a proof of concept, an RRU-based QSPR model was developed to predict the associated glass transition temperature (Tg) of polyimides (PIs) with deterministic values. Comprehensive model validations including external, internal, and Y-random validations were performed. Also, an RU-based QSPR model developed based on the same large database of 1321 PIs provides nonunique prediction results, which further prove the necessity of RRU-based structure representation. Promising results obtained by the application of the RRU-based model confirm that the as-developed RRU method provides an effective representation that accurately captures the sequence of repeat units and thus realizes reliable polymer property prediction by data-driven approaches.
Assuntos
Polímeros , Relação Quantitativa Estrutura-Atividade , Polímeros/química , Temperatura de Transição , Temperatura , Vidro/químicaRESUMO
Photocatalytic hydrogen (H2 ) production is significant to overcome challenges like fossil fuel depletion and carbon dioxide emission, but its efficiency is still far below that which is needed for commercialization. Herein, we achieve long-term stable H2 bubbling production from water (H2 O) and lactic acid via visible-light-driven photocatalysis in a porous microreactor (PP12); the catalytic system benefits from photocatalyst dispersion, charge separation, mass transfer, and dissociation of O-H bonds associated with H2 O. With the widely used platinum/cadmium-sulfide (Pt/CdS) photocatalyst, PP12 leads to a H2 bubbling production rate of 602.5â mmol h-1 m-2 , which is 1000â times higher than that in a traditional reactor. Even when amplifying PP12 into a flat-plate reactor with an area as large as 1â m2 and extending the reaction time to 100â h, the H2 bubbling production rate still remains at around 600.0â mmol h-1 m-2 , offering great potential for commercialization.
RESUMO
Rapid droplet detachment from the surface in a "pancake rebound" has recently attracted abundant interest owing to the contact time control for applications in anti-icing and self-cleaning. Even though the pancake rebound on rigid substrates has been realized, the establishment of artificial structures on a flexible counterpart with droplet impact behavior studies has rarely been reported. Here, we introduced a facile approach to fabricating a flexible superhydrophobic film decorated with tunable hierarchical micro/nanostructures for water repellency. With the appropriately optimized architecture, the pancake rebound with reduced contact time can be realized when reaching a specific Weber number on the microcones. We also observed that the pancake rebound on microcilia could be realized by regulating the energy-transfer process on the flexible film during the droplet impact. A tightly stretched and suspended film can serve as the "spring" to store the elastic energy transferred from the kinetic energy of the penetrated droplet while converting back to kinetic energy during the emptying process with a reduced contact time of 5.2 ms. With the preserved water repellency on diverse curvatures, the study raises a new avenue to realize superhydrophobic surfaces and rapid droplet detachment with the potential for a broader spectrum toward practical scenarios in our daily life.
RESUMO
The past decades have witnessed an increasing interest in developing advanced polymerization techniques subjected to external fields. Various physical modulations, such as temperature, light, electricity, magnetic field, ultrasound, and microwave irradiation, are noninvasive means, having superb but distinct abilities to regulate polymerizations in terms of process intensification and spatial and temporal controls. Gas as an emerging regulator plays a distinctive role in controlling polymerization and resembles a physical regulator in some cases. This review provides a systematic overview of seven types of external-field-regulated polymerizations, ranging from chain-growth to step-growth polymerization. A detailed account of the relevant mechanism and kinetics is provided to better understand the role of each external field in polymerization. In addition, given the crucial role of modeling and simulation in mechanisms and kinetics investigation, an overview of model construction and typical numerical methods used in this field as well as highlights of the interaction between experiment and simulation toward kinetics in the existing systems are given. At the end, limitations and future perspectives for this field are critically discussed. This state-of-the-art research progress not only provides the fundamental principles underlying external-field-regulated polymerizations but also stimulates new development of advanced polymerization methods.
RESUMO
Cellular mechanical phenotypes in connection to physiological and pathological states of cells have become a promising intrinsic biomarker for label-free cell analysis in various biological research and medical diagnostics. In this work, we present a microfluidic system capable of high-throughput cellular mechanical phenotyping based on a rapid single-cell hydrodynamic stretching in a continuous viscoelastic fluid flow. Randomly introduced single cells are first aligned into a single streamline in viscoelastic fluids before being guided to a flow splitting junction for consistent hydrodynamic stretching. The arrival of individual cells prior to the flow splitting junction can be detected by an electrical sensing unit, which produces a triggering signal to activate a high-speed camera for on-demand imaging of the cell motion and deformation through the flow splitting junction. Cellular mechanical phenotypes, including cell size and cell deformability, are extracted from the analysis of these captured single-cell images. We have evaluated the sensitivity of the developed microfluidic mechanical phenotyping system by measuring the synthesized hydrogel microbeads with known Young's modulus. With this microfluidic cellular mechanical phenotyping system, we have revealed the statistical difference in the deformability of microfilament disrupted, normal, and fixed NIH 3T3 fibroblast cells. Furthermore, with the implementation of a machine-learning-based classification of MCF-10A and MDA-MB-231 mixtures, our label-free cellular phenotyping system has achieved a comparable cell analysis accuracy (0.9:1, 5.03:1) with respect to the fluorescence-based flow cytometry results (0.97:1, 5.33:1). The presented microfluidic mechanical phenotyping technique will open new avenues for high-throughput and label-free single-cell analysis in diverse biomedical applications.
Assuntos
Microfluídica , Análise de Célula Única , Animais , Citometria de Fluxo , Hidrodinâmica , Camundongos , Células NIH 3T3RESUMO
The sensitivity and linearity are critical parameters that can preserve the high pressure-resolution across a wide range and simplify the signal processing process of flexible tactile sensors. Although extensive micro-structured dielectrics have been explored to improve the sensitivity of capacitive sensors, the attenuation of sensitivity with increasing pressure is yet to be fully resolved. Herein, a novel dielectric layer based on the gradient micro-dome architecture (GDA) is presented to simultaneously realize the high sensitivity and ultrabroad linearity range of capacitive sensors. The gradient micro-dome pixels with rationally collocated amount and height can effectively regulate the contact area and hence enable the linear variation in effective dielectric constant of the GDA dielectric layer under varying pressures. With systematical optimization, the sensor exhibits the high sensitivity of 0.065 kPa-1 in an ultrabroad linearity range up to 1700 kPa, which is first reported. Based on the excellent sensitivity and linearity, the high pressure-resolution can be preserved across the full scale of pressure spectrum. Therefore, potential applications such as all-round physiological signal detection in diverse scenarios, control instruction transmission with combinatorial force inputs, and convenient Morse code communication with non-overlapping capacitance signals are successfully demonstrated through a single sensor device.
Assuntos
Dispositivos Eletrônicos Vestíveis , Capacitância Elétrica , Fenômenos Mecânicos , Pressão , TatoRESUMO
Cell viability is a physiological status connected to cell membrane integrity and cytoplasmic topography, which is profoundly important for fundamental biological research and practical biomedical applications. A conventional method for assessing cell viability is through cell staining analysis. However, cell staining involves laborious and complicated processing procedures and is normally cytotoxic. Intrinsic cellular phenotypes thus provide new avenues for measuring cell viability in a stain-free and non-toxic manner. In this work, we present a label-free non-destructive impedance-based approach for cell viability assessment by simultaneously characterizing multiple electrical cellular phenotypes in a high-throughput manner (>1000 cells per min). A novel concept called the complex opacity spectrum is introduced for improving the discrimination of live and dead cells. The analysis of the complex opacity spectrum leads to the discovery of two frequency ranges that are optimized for characterizing membranous and cytoplasmic electrical phenotypes. The present impedance-based approach has successfully discriminated between living and dead cells in two different experimental scenarios, including mixed living and dead cells in both homogenous and heterogeneous cell samples. This impedance-based single cell phenotyping technique provides highly accurate and consistent cell viability analysis, which has been validated by commercial fluorescence-based flow cytometry (â¼1% difference) using heterogeneous cell samples. This label-free high-throughput cell viability analysis strategy will have broad applications in the field of biology and medicine.
Assuntos
Impedância Elétrica , Sobrevivência Celular , Citometria de Fluxo , Coloração e RotulagemRESUMO
Acoustofluidics have been widely used for particle and cell manipulations. Given the scaling of acoustic radiation forces and acoustic streaming flow velocities with increasing frequency, existing acoustofluidic manipulation of submicron particles require actuation at MHz and even GHz frequencies. In this work, we explore a novel acoustofluidic phenomenon, where an ultralow frequency (800 Hz) acoustic vibration is capable of concentrating and patterning submicron particles at two poles of each pillar in an array embedded in a microfluidic device. This unprecedented phenomenon is attributed to a collective effect of acoustic streaming induced drag force and non-Newtonian fluid induced elastic lift force, arising from symmetric acoustic microstreaming flows around each pillar uniformly across the entire pillar array. To our knowledge, this is the first demonstration that particles can be manipulated by an acoustic wave with a wavelength that is 6 orders of magnitude larger than the particle size. This ultralow frequency acoustofluidics will enable a simple and cost-effective solution to effective and uniform manipulation of submicron biological particles in large scales, which has the potential to be widely exploited in clinical and biomedical fields.
RESUMO
Exosomes are nanosized (30-150 nm) extracellular vesicles (EVs) secreted by various cell types. They are easily accessible in biological fluids and contain specific disease biomarkers, making them attractive for diagnosis and prognosis applications. Accurate biological characterization of exosomes is an important step toward clinical applications that require effective and precise isolation of subpopulations of exosomes. It is therefore of particular importance to develop an efficient and reliable exosome purification technique to isolate exosomes from the heterogeneous extracellular fluids. In this work, we intend to isolate and visualize exosomes by combining an affinity-based method and passive microfluidic particle trapping. Microbeads with a diameter of 20 µm are first functionalized with streptavidin and biotinylated antibodies and then used to immobilize and enrich exosomes on their surfaces using antigen-antibody affinity binding. We have developed a microfluidic device with trapping arrays to efficiently trap a large number of individual microbeads with enriched exosomes at the single-particle level, i.e., one single bead per trapping site, on the basis of a passive hydrodynamic trapping principle. The large-scale microfluidic single-bead trapping permits massively multiplexed fluorescence detection and quantification of the individual beads, which prevents the optical interfering of background noise as well as allowing one to acquire an average fluorescence density of a single bead for an accurate fluorescence-based exosome quantification. In addition, on-chip elusion and lysis of the protein and RNA content of captured exosomes enable further molecular analysis of exosomes, including Western blot and quantitative polymerase chain reaction. This microfluidic device provides a rapid and straightforward capturing and quantification method to analyze EVs for a variety of biological studies and applications.
Assuntos
Fracionamento Celular/instrumentação , Exossomos/metabolismo , Hidrodinâmica , Dispositivos Lab-On-A-Chip , Humanos , Células MCF-7RESUMO
Exosomes, submicron membrane vesicles (30-200 nm) secreted by almost all cells, containing significant information such as proteins, microRNAs and DNAs, are closely associated with disease diagnostic and prognostic tests for liquid biopsy in clinical practice. However, their inherently small sizes lead to great challenges for isolating them from complex body fluids with high-throughput and high-purity. In this work, a reverse wavy channel structure using viscoelastic fluids with the addition of biocompatible polymer was presented for elasto-inertial focusing and sorting of submicron particles and exosomes. The microfluidic periodically reversed Dean secondary flow generated by repeated wavy channel structures could facilitate particle focusing compared with traditional straight channels. Four differently sized fluorescent submicron spheres (1 µm, 500 nm, 300 and 100 nm) were used to study the focusing behavior under various conditions. We have achieved simple, high-throughput, and label-free sorting of exosomes with purity higher than 92% and recovery higher than 81%. This developed elasto-inertial exosome sorting technique may provide a promising platform in various exosome-related biological research and pharmaceutical applications.
Assuntos
Exossomos/química , Microscopia de Fluorescência/métodos , Materiais Biocompatíveis/química , Linhagem Celular Tumoral , Elasticidade , Corantes Fluorescentes/química , Humanos , Microfluídica , Polímeros/químicaRESUMO
Droplet-based single-cell sequencing has emerged as a very powerful tool to study the cellular heterogeneity in diseased tissues for a variety of biological problems. However, the current droplet generation with a single particle and cell encapsulation is a random process and suffers from a low yield that is unable to fulfill the high-throughput analysis requirement. In this work, we present a new fluorescence-activated droplet sorting (FADS) system that can isolate single-cell droplets at high accuracy and high yield using a highly focused surface acoustic wave (HFSAW) with a beam width around 50 µm. The acoustic wave is locally coupled into the microfluidic channel for droplet sorting through a micropillar waveguide structure between the channel and the interdigitated transducer (IDT). This detachable acoustic sorting system allows the disposal of the microfluidic channel after a single use to avoid cross-contamination and keeps the expensive IDT device reusable. We have achieved rapid and accurate isolation of single-cell droplets with purity higher than 90% at â¼1 kHz sorting rate with three different encapsulation contents. In addition, with the uniformly produced droplet size at â¼40 µm, the present acoustic FADS system enables effective sorting of small particles down to submicrometer size, which is challenging for existing fluorescence-activated cell sorting systems.
Assuntos
Citometria de Fluxo/métodos , Som , Desenho de Equipamento , Citometria de Fluxo/instrumentação , Humanos , Células MCF-7 , Técnicas Analíticas Microfluídicas , Análise de Célula ÚnicaRESUMO
Mechanical properties of cells, reflective of various biochemical characteristics such as gene expression and cytoskeleton, are promising label-free biomarkers for studying and characterizing cells. Electrical properties of cells, dependent on the cellular structure and content, are also label-free indicators of cell states and phenotypes. In this work, we have developed a microfluidic device that is able to simultaneously characterize the mechanical and electrical properties of individual biological cells in a high-throughput manner (>1000 cells/min). The deformability of MCF-7 breast cancer cells was characterized based on the passage time required for an individual cell to pass through a constriction smaller than the cell size. The total passage time can be divided into two components: the entry time required for a cell to deform and enter a constriction, which is dominated by the deformability of cells, and the transit time required for the fully deformed cell to travel inside the constriction, which mainly relies on the surface friction between cells and the channel wall. The two time durations for individual cells to pass through the entry region and transit region have both been investigated. In addition, undeformed cells and fully deformed cells were simultaneously characterized via electrical impedance spectroscopy technique. The combination of mechanical and electrical properties serves as a unique set of intrinsic cellular biomarkers for single-cell analysis, providing better differentiation of cellular phenotypes, which are not easily discernible via single-marker analysis.
Assuntos
Forma Celular , Impedância Elétrica , Células Epiteliais/metabolismo , Eritrócitos/metabolismo , Dispositivos Lab-On-A-Chip , Humanos , Células MCF-7 , Análise de Célula Única/métodosRESUMO
Oil/water separation has inspired much research interest because of the damages caused to our natural environment due to oily wastewater. As a leader of advanced separation materials, electrospun polymeric fibrous mats having the properties of special surface wettability, high specific surface area, and high porosity will be a good membrane material for the separation of oily wastewater. Herein, we first prepared pH-responsive polymer poly(dimethylsiloxane)-block-poly(4-vinylpyridine) (PDMS-b-P4VP) mat using electrospinning technology. The PDMS-b-P4VP fibrous mat with a thickness of around 250 µm exhibits good pH-switchable oil/water wettability and is able to effectively separate oil or water from layered oil/water mixtures by gravity driven through adjusting the pH value. Stemming from its porous structure and pH-switchable superwettability, the electrospun PDMS-b-P4VP fibrous mat achieved controllable separations with high fluxes of approximately 9000 L h-1 m-2 for oil (hexane) and 27 000 L h-1 m-2 for water. In addition, extended studies on the polymer/silica nanoparticulate (silica NP) composite fibrous mats show that the addition of an inorganic component improves the thermal stability, pH-switchable wettability, and separation performance of the fibrous mats (approximately 9000 L h-1 m-2 for hexane and 32 000 L h-1 m-2 for water). It can be concluded from the results that both polymer fibrous mats and silica-filled composite fibrous mats are good candidates for on-demand layered oil/water mixture separation.
RESUMO
A "schizophrenic" block copolymer (poly[1'-(2-methacryloxyethyl)-3',3'-dimethyl-6-nitrospiro-(2H-1-benzopyran-2,2'-indoline)]-b-poly(acrylic acid) (PSPMA-b-PAA)) was synthesized by sequential copper(0)-mediated living radical polymerization (Cu(0)-mediated LRP) at 30 °C in an oxygen-tolerant system followed by hydrolysis of the resulting polymer. The solvatechromic behaviors of the PSPMA10-b-poly(t-butyl acrylate)40 (PSPMA10-b-PtBA40) and PSPMA10-b-PAA40 block copolymers in organic solvents were investigated by UV-vis spectroscopy. The PSPMA10-b-PtBA40 stabilizes the nonpolar photoisomer and is not sensitive to the polarity of the solvent, while the PSPMA10-b-PAA40 stabilizes the planar zwitterionic form without irradiation. Furthermore, light-induced isomerization of spiropyran (Sp) moieties from Sp to merocyanine (Mc) was demonstrated. Finally, the "schizophrenic" micellization behavior of as-prepared copolymer in aqueous solution regulated by light and pH stimuli was vividly demonstrated, and the reversibility of micellization processes performed in this study was also examined. The large compound micelles can bring out a gradually extended and even transformed conformation with increasing deprotonation degree at pH > pKa.
RESUMO
Novel fluorinated gradient copolymer was designed for smart surface with light-responsive controllable wettability and excellent stability. The switchable mechanism and physicochemical characteristics of the as-prepared surface decorated by designed polymeric material were investigated by ultraviolet-visible (UV-vis) spectrum, scanning electron microscope (SEM), atomic force microscope (AFM), and X-ray photoelectron spectroscopy (XPS). Thanks to the functional film and surface roughening, etched silicon surface fabricated by copolymer involving spiropyran (Sp) moieties possesses a fairly large variation range of WCA (28.1°) and achieves the transformation between hydrophilicity (95.2° < 109.2°) and hydrophobicity (123.3° > 109.2°) relative to blank sample (109.2°). The synthetic strategy and developed smart surface offer a promising application in coating with controllable wettability, which bridge the gap between chemical structure and material properties.
RESUMO
The necessity for rapid and accurate bacterial growth monitoring is imperative across various domains, including healthcare and environmental safety. We introduce the self-synchronized droplet-amplified electrical screening cytometry (SYNC) system, a novel meld of droplet microfluidics and electrochemical amplification tailored for precise bacterial growth kinetic monitoring. SYNC encapsulates single bacteria in picolitre droplets, enabling real-time, fluorescence-free electrochemical monitoring. A specially devised phosphorylation-amplified culture medium translates bacterial metabolic activity into discernible electrical impedance changes. The dual-channel design and a rail-based structure in SYNC facilitate parallel screening and self-synchronization of droplets, addressing the limitations of conventional impedance cytometry. SYNC showcases a 5-fold enhancement in detection sensitivity and reduces 50% of the detection time compared to traditional approaches. Notably, SYNC is pioneering in providing exact initial bacterial concentrations, achieve to 104 bacteria/ml, a capability unmatched by existing real-time techniques measuring electrochemical variations. Along with its robust performance, this earmarks SYNC as a powerful tool for applications such as antibiotic susceptibility testing, food quality monitoring, and real-time water bacteria monitoring, paving the way for enhanced microbial process management and infection control.
Assuntos
Técnicas Biossensoriais , Técnicas Biossensoriais/métodos , Técnicas Biossensoriais/instrumentação , Fosforilação , Desenho de Equipamento , Microfluídica/métodos , Bactérias/isolamento & purificação , Bactérias/crescimento & desenvolvimento , Cinética , Técnicas Eletroquímicas/métodos , Escherichia coliRESUMO
Manufacturing whole cancer cell vaccines (WCCV) with both biosafety and efficacy is crucial for tumor immunotherapy. Pyroptotic cancer cells, due to their highly immunogenic properties, present a promising avenue for the development of WCCV. However, the successful development of WCCV based on pyroptotic cancer cells is yet to be accomplished. Here, a facile strategy that utilized photocatalytic carbon dots (CDs) to induce pyroptosis of cancer cells for fabricating WCCV is reported. Photocatalytic CDs are capable of generating substantial amounts of hydroxyl radicals and can effectively decrease cytoplasmic pH values under white light irradiation. This process efficiently triggers cancer cell pyroptosis through the reactive oxygen species (ROS)-mitochondria-caspase 3-gasdermin E pathway and the proton motive force-driven mitochondrial ATP synthesis pathway. Moreover, in vitro, these photocatalytic CDs-induced pyroptotic cancer cells (PCIP) can hyperactivate macrophage (M0-M1) with upregulation of major histocompatibility complex class II expression. In vivo, PCIP induced specific immune-preventive effects in melanoma and breast cancer mouse models through anticancer immune memory, demonstrating effective WCCV. This work provides novel insights for inducing cancer cell pyroptosis and bridges the gap in the fabrication of WCCV based on pyroptotic cancer cells.
Assuntos
Vacinas Anticâncer , Carbono , Piroptose , Piroptose/efeitos dos fármacos , Animais , Carbono/química , Camundongos , Vacinas Anticâncer/química , Linhagem Celular Tumoral , Catálise , Humanos , Pontos Quânticos/química , Espécies Reativas de Oxigênio/metabolismo , Luz , Feminino , Neoplasias da Mama/patologia , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/terapia , Neoplasias da Mama/metabolismoRESUMO
Label-free three-dimensional imaging plays a crucial role in unraveling the complexities of cellular functions and interactions in biomedical research. Conventional single-cell optical tomography techniques offer affordability and the convenience of bypassing laborious cell labelling protocols. However, these methods are encumbered by restricted illumination scanning ranges on abaxial plane, resulting in the loss of intricate cellular imaging details. The ability to fully control cellular rotation across all angles has emerged as an optimal solution for capturing comprehensive structural details of cells. Here, we introduce a label-free, cost-effective, and readily fabricated contactless acoustic-induced vibration system, specifically designed to enable multi-degree-of-freedom rotation of cells, ultimately attaining stable in-situ rotation. Furthermore, by integrating this system with advanced deep learning technologies, we perform 3D reconstruction and morphological analysis on diverse cell types, thus validating groups of high-precision cell identification. Notably, long-term observation of cells reveals distinct features associated with drug-induced apoptosis in both cancerous and normal cells populations. This methodology, based on deep learning-enabled cell 3D reconstruction, charts a novel trajectory for groups of real-time cellular visualization, offering promising advancements in the realms of drug screening and post-single-cell analysis, thereby addressing potential clinical requisites.