Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 274
Filtrar
Mais filtros

Tipo de documento
Intervalo de ano de publicação
1.
Plant Physiol ; 196(2): 979-995, 2024 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-38917222

RESUMO

Wheat (Triticum aestivum L.) is one of the most important crops worldwide and a major source of human cadmium (Cd) intake. Limiting grain Cd concentration (Gr_Cd_Conc) in wheat is necessary to ensure food safety. However, the genetic factors associated with Cd uptake, translocation and distribution and Gr_Cd_Conc in wheat are poorly understood. Here, we mapped quantitative trait loci (QTLs) for Gr_Cd_Conc and its related transport pathway using a recombinant inbred line (RIL) population derived from 2 Polish wheat varieties (RIL_DT; dwarf Polish wheat [DPW] and tall Polish wheat [TPW]). We identified 29 novel major QTLs for grain and tissue Cd concentration; 14 novel major QTLs for Cd uptake, translocation, and distribution; and 27 major QTLs for agronomic traits. We also analyzed the pleiotropy of these QTLs. Six novel QTLs (QGr_Cd_Conc-1A, QGr_Cd_Conc-3A, QGr_Cd_Conc-4B, QGr_Cd_Conc-5B, QGr_Cd_Conc-6A, and QGr_Cd_Conc-7A) for Gr_Cd_Conc explained 8.16% to 17.02% of the phenotypic variation. QGr_Cd_Conc-3A, QGr_Cd_Conc-6A, and QGr_Cd_Conc-7A pleiotropically regulated Cd transport; 3 other QTLs were organ-specific for Gr_Cd_Conc. We fine-mapped the locus of QGr_Cd_Conc-4B and identified the candidate gene as Cation/Ca exchanger 2 (TpCCX2-4B), which was differentially expressed in DPW and TPW. It encodes an endoplasmic reticulum membrane/plasma membrane-localized Cd efflux transporter in yeast. Overexpression of TpCCX2-4B reduced Gr_Cd_Conc in rice. The average Gr_Cd_Conc was significantly lower in TpCCX2-4BDPW genotypes than in TpCCX2-4BTPW genotypes of the RIL_DT population and 2 other natural populations, based on a Kompetitive allele-specific PCR marker derived from the different promoter sequences between TpCCX2-4BDPW and TpCCX2-4BTPW. Our study reveals the genetic mechanism of Cd accumulation in wheat and provides valuable resources for genetic improvement of low-Cd-accumulating wheat cultivars.


Assuntos
Cádmio , Locos de Características Quantitativas , Triticum , Triticum/genética , Triticum/metabolismo , Cádmio/metabolismo , Locos de Características Quantitativas/genética , Mapeamento Cromossômico , Grão Comestível/genética , Grão Comestível/metabolismo , Sementes/genética , Sementes/metabolismo , Fenótipo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
2.
Plant Physiol ; 196(2): 870-882, 2024 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-39158082

RESUMO

Karyotypes provide key cytogenetic information on phylogenetic relationships and evolutionary origins in related plant species. The St genome of Pseudoroegneria contributes to 8 alloploid genera, representing over half of the species that are highly valuable for wheat (Triticum aestivum) breeding and for understanding Triticeae species evolution. However, St chromosome characterization is challenging due to limited cytogenetic markers and DNA information. We developed a complete set of St genome-specific chromosome painting probes for identification of the individual chromosomes 1St to 7St based on the genome sequences of Pseudoroegneria libanotica and wheat. We revealed the conservation of St chromosomes in St-containing species by chromosome painting, including Pseudoroegneria, Roegneria, Elymus, and Campeiostachys. Notably, the Y genome showed hybridization signals, albeit weaker than those of the St genome. The awnless species harboring the Y genome exhibited more intense hybridization signals compare to the awned species in Roegneria and Campeiostachys, yet weaker than the hybridization signals of the St genome in autotetraploid Pseudoroegneria strigosa. Although awnless species were morphologically more similar to each other, phenotypic divergence progressively increased from awnless to awned species. Our results indicate that the Y genome originated from the St genome and shed light on the possible origin of the Roegneria and Campeiostachys species, enhancing our understanding of St-genome-containing species evolution.


Assuntos
Coloração Cromossômica , Cromossomos de Plantas , Genoma de Planta , Poaceae , Coloração Cromossômica/métodos , Cromossomos de Plantas/genética , Poaceae/genética , Triticum/genética , Filogenia , Hibridização in Situ Fluorescente
3.
Plant J ; 114(2): 338-354, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36789486

RESUMO

Cytidine diphosphate diacylglycerol (CDP-DAG), an important intermediate for glycerolipid biosynthesis, is synthesized under the catalytic activity of CDP-DAG synthase (CDS) to produce anionic phosphoglycerolipids such as phosphatidylglycerol (PG) and cardiolipin (CL). Previous studies showed that Arabidopsis CDSs are encoded by a small gene family, termed CDS1-CDS5, the members of which are integral membrane proteins in endoplasmic reticulum (ER) and in plastids. However, the details on how CDP-DAG is provided for mitochondrial membrane-specific phosphoglycerolipids are missing. Here we present the identification of a mitochondrion-specific CDS, designated CDS6. Enzymatic activity of CDS6 was demonstrated by the complementation of CL synthesis in the yeast CDS-deficient tam41Δ mutant. The Arabidopsis cds6 mutant lacking CDS6 activity showed decreased mitochondrial PG and CL biosynthesis capacity, a severe growth deficiency finally leading to plant death. These defects were rescued partly by complementation with CDS6 or supplementation with PG and CL. The ultrastructure of mitochondria in cds6 was abnormal, missing the structures of cristae. The degradation of triacylglycerol (TAG) in lipid droplets and starch in chloroplasts in the cds6 mutant was impaired. The expression of most differentially expressed genes involved in the mitochondrial electron transport chain was upregulated, suggesting an energy-demanding stage in cds6. Furthermore, the contents of polar glycerolipids in cds6 were dramatically altered. In addition, cds6 seedlings lost the capacity for cell proliferation and showed a higher oxidase activity. Thus, CDS6 is indispensable for the biosynthesis of PG and CL in mitochondria, which is critical for establishing mitochondrial structure, TAG degradation, energy production and seedling development.


Assuntos
Arabidopsis , Arabidopsis/metabolismo , Glicogênio Sintase/metabolismo , Cistina Difosfato/metabolismo , Diglicerídeos/metabolismo , Diacilglicerol Colinofosfotransferase/metabolismo , Mitocôndrias/metabolismo , Fosfatidilgliceróis/metabolismo , Saccharomyces cerevisiae/metabolismo
4.
BMC Genomics ; 25(1): 253, 2024 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-38448864

RESUMO

BACKGROUND: The genus Pseudoroegneria (Nevski) Löve (Triticeae, Poaceae), whose genome symbol was designed as "St", accounts for more than 60% of perennial Triticeae species. The diploid species Psudoroegneria libanotica (2n = 14) contains the most ancient St genome, exhibited strong drought resistance, and was morphologically covered by cuticular wax on the aerial part. Therefore, the St-genome sequencing data could provide fundamental information for studies of genome evolution and reveal its mechanisms of cuticular wax and drought resistance. RESULTS: In this study, we reported the chromosome-level genome assembly for the St genome of Pse. libanotica, with a total size of 2.99 Gb. 46,369 protein-coding genes annotated and 71.62% was repeat sequences. Comparative analyses revealed that the genus Pseudoroegneria diverged during the middle and late Miocene. During this period, unique genes, gene family expansion, and contraction in Pse. libanotica were enriched in biotic and abiotic stresses, such as fatty acid biosynthesis which may greatly contribute to its drought adaption. Furthermore, we investigated genes associated with the cuticular wax formation and water deficit and found a new Kcs gene evm.TU.CTG175.54. It plays a critical role in the very long chain fatty acid (VLCFA) elongation from C18 to C26 in Pse. libanotica. The function needs more evidence to be verified. CONCLUSIONS: We sequenced and assembled the St genome in Triticeae and discovered a new KCS gene that plays a role in wax extension to cope with drought. Our study lays a foundation for the genome diversification of Triticeae species and deciphers cuticular wax formation genes involved in drought resistance.


Assuntos
Resistência à Seca , Elymus , Mapeamento Cromossômico , Cromossomos , Ácidos Graxos
5.
BMC Plant Biol ; 24(1): 930, 2024 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-39370516

RESUMO

BACKGROUND: Wheat is one of major sources of human cadmium (Cd) intake. Reducing the grain Cd concentrations in wheat is urgently required to ensure food security and human health. In this study, we performed a field experiment at Wenjiang experimental field of Sichuan Agricultural University (Chengdu, China) to reveal the effects of FeCl3 and Fe2(SO4)3 on reducing grain Cd concentrations in dwarf Polish wheat (Triticum polonicum L., 2n = 4x = 28, AABB). RESULTS: Soil application of FeCl3 and Fe2(SO4)3 (0.04 M Fe3+/m2) significantly reduced grain Cd concentration in DPW at maturity by 19.04% and 33.33%, respectively. They did not reduce Cd uptake or root-to-shoot Cd translocation, but increased Cd distribution in lower leaves, lower internodes, and glumes. Meanwhile, application of FeCl3 and Fe2(SO4)3 up-regulated the expression of TpNRAMP5, TpNRAMP2 and TpYSL15 in roots, and TpYSL15 and TpZIP3 in shoots; they also downregulated the expression of TpZIP1 and TpZIP3 in roots, and TpIRT1 and TpNRAMP5 in shoots. CONCLUSIONS: The reduction in grain Cd concentration caused by application of FeCl3 and Fe2(SO4)3 was resulted from changes in shoot Cd distribution via regulating the expression of some metal transporter genes. Overall, this study reports the physiological pathways of soil applied Fe fertilizer on grain Cd concentration in wheat, suggests a strategy for reducing grain Cd concentration by altering shoot Cd distribution.


Assuntos
Cádmio , Compostos Férricos , Triticum , Triticum/metabolismo , Triticum/genética , Cádmio/metabolismo , Compostos Férricos/metabolismo , Cloretos/metabolismo , Fertilizantes , Solo/química , Poluentes do Solo/metabolismo , Raízes de Plantas/metabolismo , Grão Comestível/metabolismo , Grão Comestível/genética , China , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética
6.
BMC Plant Biol ; 24(1): 1006, 2024 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-39455993

RESUMO

BACKGROUND: Fusarium head blight (FHB), a devastating disease of wheat production, is predominantly elicited by Fusarium graminearum (Fg). The tetraploid Thinopyrum elongatum is a tertiary gene resource of common wheat that possesses high affinity and displays high resistance traits against multiple biotic and abiotic stress. We aim to employ and utilize the novel FHB resistance resources from the wild germplasm of common wheat for breeding. RESULTS: Durum wheat-tetraploid Th. elongatum amphiploid 8801 was hybridized with common wheat cultivars SM482 and SM51, and the F5 generation was generated. We conducted cytogenetically in situ hybridization (ISH) technologies to select and confirm a genetically stable 7E(7D) substitution line K17-1069-5, which showed FHB expansion resistance in both field and greenhouse infection experiments and displayed no significant disadvantage in agronomic traits compared to their common wheat parents in the field. The F2 segregation populations (K17-1069-5 × SM830) showed that the 7E chromosome conferred dominant FHB resistance with dosage effect. We developed 19 SSR molecular markers specific to chromosome 7E, which could be conducted for genetic mapping and large breeding populations marker-assisted selection (MAS) during selection procedures in the future. We isolated a novel Fhb7 allele from the tetraploid Th. elongatum chromosome 7E (Chr7E) using homology-based cloning, which was designated as TTE7E-Fhb7. CONCLUSIONS: In summary, our study developed a novel wheat-tetraploid Thinopyrum elongatum 7E(7D) K17-1069-5 substitution line which contains stable FHB resistance.


Assuntos
Cromossomos de Plantas , Resistência à Doença , Fusarium , Doenças das Plantas , Tetraploidia , Triticum , Triticum/genética , Triticum/microbiologia , Fusarium/fisiologia , Resistência à Doença/genética , Doenças das Plantas/microbiologia , Doenças das Plantas/genética , Cromossomos de Plantas/genética , Melhoramento Vegetal , Poaceae/genética , Poaceae/microbiologia , Mapeamento Cromossômico
7.
Metabolomics ; 20(3): 57, 2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38773045

RESUMO

BACKGROUND: Despite the clear clinical diagnostic criteria for necrozoospermia in andrology, the fundamental mechanisms underlying it remain elusive. This study aims to profile the lipid composition in seminal plasma systematically and to ascertain the potential of lipid biomarkers in the accurate diagnosis of necrozoospermia. It also evaluates the efficacy of a lipidomics-based random forest algorithm model in identifying necrozoospermia. METHODS: Seminal plasma samples were collected from patients diagnosed with necrozoospermia (n = 28) and normozoospermia (n = 28). Liquid chromatography-mass spectrometry (LC-MS) was used to perform lipidomic analysis and identify the underlying biomarkers. A lipid functional enrichment analysis was conducted using the LION lipid ontology database. The top 100 differentially significant lipids were subjected to lipid biomarker examination through random forest machine learning model. RESULTS: Lipidomic analysis identified 46 lipid classes comprising 1267 lipid metabolites in seminal plasma. The top five enriched lipid functions as follows: fatty acid (FA) with ≤ 18 carbons, FA with 16-18 carbons, monounsaturated FA, FA with 18 carbons, and FA with 16 carbons. The top 100 differentially significant lipids were subjected to machine learning analysis and identified 20 feature lipids. The random forest model identified lipids with an area under the curve > 0.8, including LPE(20:4) and TG(4:0_14:1_16:0). CONCLUSIONS: LPE(20:4) and TG(4:0_14:1_16:0), were identified as differential lipids for necrozoospermia. Seminal plasma lipidomic analysis could provide valuable biochemical information for the diagnosis of necrozoospermia, and its combination with conventional sperm analysis may improve the accuracy and reliability of the diagnosis.


Assuntos
Algoritmos , Lipidômica , Sêmen , Adulto , Humanos , Masculino , Biomarcadores/sangue , Infertilidade Masculina/diagnóstico , Infertilidade Masculina/metabolismo , Lipidômica/métodos , Lipídeos/análise , Lipídeos/sangue , Aprendizado de Máquina , Algoritmo Florestas Aleatórias , Sêmen/metabolismo , Sêmen/química , Espectrometria de Massa com Cromatografia Líquida
8.
Theor Appl Genet ; 137(1): 17, 2024 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-38198011

RESUMO

KEY MESSAGE: The new stripe rust resistance gene Yr4EL in tetraploid Th. elongatum was identified and transferred into common wheat via 4EL translocation lines. Tetraploid Thinopyrum elongatum is a valuable genetic resource for improving the resistance of wheat to diseases such as stripe rust, powdery mildew, and Fusarium head blight. We previously reported that chromosome 4E of the 4E (4D) substitution line carries all-stage stripe rust resistance genes. To optimize the utility of these genes in wheat breeding programs, we developed translocation lines by inducing chromosomal structural changes through 60Co-γ irradiation and developing monosomic substitution lines. In total, 53 plants with different 4E chromosomal structural changes were identified. Three homozygous translocation lines (T4DS·4EL, T5AL·4EL, and T3BL·4EL) and an addition translocation line (T5DS·4EL) were confirmed by the genomic in situ hybridization (GISH), fluorescence in situ hybridization (FISH), FISH-painting, and wheat 55 K SNP array analyses. These four translocation lines, which contained chromosome arm 4EL, exhibited high stripe rust resistance. Thus, a resistance gene (tentatively named Yr4EL) was localized to the chromosome arm 4EL of tetraploid Th. elongatum. For the application of marker-assisted selection (MAS), 32 simple sequence repeat (SSR) markers were developed, showing specific amplification on the chromosome arm 4EL and co-segregation with Yr4EL. Furthermore, the 4DS·4EL line could be selected as a good pre-breeding line that better agronomic traits than other translocation lines. We transferred Yr4EL into three wheat cultivars SM482, CM42, and SM51, and their progenies were all resistant to stripe rust, which can be used in future wheat resistance breeding programs.


Assuntos
Basidiomycota , Triticum , Triticum/genética , Hibridização in Situ Fluorescente , Melhoramento Vegetal , Tetraploidia , Poaceae/genética
9.
Theor Appl Genet ; 137(5): 116, 2024 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-38698276

RESUMO

KEY MESSAGE: An adult plant gene for resistance to stripe rust was narrowed down to the proximal one-third of the 2NvS segment translocated from Aegilops ventricosa to wheat chromosome arm 2AS, and based on the gene expression analysis, two candidate genes were identified showing a stronger response at the adult plant stage compared to the seedling stage. The 2NvS translocation from Aegilops ventricosa, known for its resistance to various diseases, has been pivotal in global wheat breeding for more than three decades. Here, we identified an adult plant resistance (APR) gene in the 2NvS segment in wheat line K13-868. Through fine mapping in a segregating near-isogenic line (NIL) derived population of 6389 plants, the candidate region for the APR gene was narrowed down to between 19.36 Mb and 33 Mb in the Jagger reference genome. Transcriptome analysis in NILs strongly suggested that this APR gene conferred resistance to stripe rust by triggering plant innate immune responses. Based on the gene expression analysis, two disease resistance-associated genes within the candidate region, TraesJAG2A03G00588940 and TraesJAG2A03G00590140, exhibited a stronger response to Puccinia striiformis f. sp. tritici (Pst) infection at the adult plant stage than at the seedling stage, indicating that they could be potential candidates for the resistance gene. Additionally, we developed a co-dominant InDel marker, InDel_31.05, for detecting this APR gene. Applying this marker showed that over one-half of the wheat varieties approved in 2021 and 2022 in Sichuan province, China, carry this gene. Agronomic trait evaluation of NILs indicated that the 2NvS segment effectively mitigated the negative effects of stripe rust on yield without affecting other important agronomic traits. This study provided valuable insights for cloning and breeding through the utilization of the APR gene present in the 2NvS segment.


Assuntos
Aegilops , Basidiomycota , Mapeamento Cromossômico , Resistência à Doença , Perfilação da Expressão Gênica , Genes de Plantas , Doenças das Plantas , Triticum , Triticum/genética , Triticum/microbiologia , Resistência à Doença/genética , Doenças das Plantas/genética , Doenças das Plantas/microbiologia , Basidiomycota/patogenicidade , Basidiomycota/fisiologia , Aegilops/genética , Aegilops/microbiologia , Melhoramento Vegetal , Transcriptoma , Cromossomos de Plantas/genética , Puccinia/patogenicidade , Puccinia/fisiologia , Regulação da Expressão Gênica de Plantas
10.
Theor Appl Genet ; 137(10): 246, 2024 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-39365463

RESUMO

KEY MESSAGE: Two small fragment translocation lines (T4DS·4DL-4EL and T5AS·5AL-4EL) showed high resistance to stripe rust and resistance gene Yr4EL was localized to an about 35 Mb region at the end of chr arm 4EL. Stripe rust, caused by the fungus Puccinia striiformis f. sp. tritici, is a devastating wheat disease worldwide. Deployment of disease resistance (R) genes in wheat cultivars is the most effective way to control the disease. Previously, the all-stage stripe rust R gene Yr4EL from tetraploid Thinopyrum elongatum was introduced into common wheat as 4E(4D) substitution and T4DS·4EL translocation lines. To further map and utilize Yr4EL, Chinese Spring (CS) mutant pairing homoeologous gene ph1b was used in crossing to induce recombination between chromosome (chr) 4EL and wheat chromosomes. Two small fragment translocation lines T4DS·4DL-4EL and T5AS·5AL-4EL with Yr4EL resistance were selected using molecular markers and confirmed by genomic in situ hybridization (GISH), fluorescence in situ hybridization (FISH), and Wheat 660 K SNP array analyses. We mapped Yr4EL to an about 35 Mb region at the end of chr 4EL, corresponding to 577.76-612.97 Mb based on the diploid Th. elongatum reference genome. In addition, two competitive allele-specific PCR (KASP) markers co-segregating with Yr4EL were developed to facilitate molecular marker-assisted selection in breeding. The T4DS·4DL-4EL lines were crossed and backcrossed with wheat cultivars SM482 and CM42, and the resulting pre-breeding lines showed high stripe rust resistance and potential for wheat breeding with good agronomic traits. These lines represent new germplasm for wheat stripe rust resistance breeding, as well as providing a solid foundation for Yr4EL fine mapping and cloning.


Assuntos
Cromossomos de Plantas , Resistência à Doença , Genes de Plantas , Melhoramento Vegetal , Doenças das Plantas , Poaceae , Translocação Genética , Triticum , Resistência à Doença/genética , Doenças das Plantas/microbiologia , Doenças das Plantas/genética , Triticum/genética , Triticum/microbiologia , Poaceae/genética , Poaceae/microbiologia , Cromossomos de Plantas/genética , Tetraploidia , Marcadores Genéticos , Puccinia/patogenicidade , Mapeamento Cromossômico , Hibridização in Situ Fluorescente , Basidiomycota/patogenicidade
11.
J Immunol ; 209(2): 280-287, 2022 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-35777850

RESUMO

Hand, foot, and mouth disease (HFMD), which is mainly caused by coxsackievirus A16 (CVA16) or enterovirus A71 (EV-A71), poses a serious threat to children's health. However, the long-term dynamics of the neutralizing Ab (NAb) response and ideal paired-serum sampling time for serological diagnosis of CVA16-infected HFMD patients were unclear. In this study, 336 CVA16 and 253 EV-A71 PCR-positive HFMD inpatients were enrolled and provided 452 and 495 sera, respectively, for NAb detection. Random-intercept modeling with B-spline was conducted to characterize NAb response kinetics. The NAb titer of CVA16 infection patients was estimated to increase from negative (2.1, 95% confidence interval [CI]: 1.4-3.3) on the day of onset to a peak of 304.8 (95% CI: 233.4-398.3) on day 21 and then remained >64 until 26 mo after onset. However, the NAb response level of EV-A71-infected HFMD patients was much higher than that of CVA16-infected HFMD patients throughout. The geometric mean titer was significantly higher in severe EV-A71-infected patients than in mild patients, with a 2.0-fold (95% CI: 1.4-3.2) increase. When a 4-fold rise in titer was used as the criterion for serological diagnosis of CVA16 and EV-A71 infection, acute-phase serum needs to be collected at 0-5 d, and the corresponding convalescent serum should be respectively collected at 17.4 (95% CI: 9.6-27.4) and 24.4 d (95% CI: 15.3-38.3) after onset, respectively. In conclusion, both CVA16 and EV-A71 infection induce a persistent humoral immune response but have different NAb response levels and paired-serum sampling times for serological diagnosis. Clinical severity can affect the anti-EV-A71 NAb response.


Assuntos
Enterovirus Humano A , Infecções por Enterovirus , Enterovirus , Doença de Mão, Pé e Boca , Anticorpos Neutralizantes , Criança , China/epidemiologia , Estudos de Coortes , Doença de Mão, Pé e Boca/diagnóstico , Humanos , Lactente , Estudos Longitudinais
12.
Mol Breed ; 44(8): 55, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39157810

RESUMO

Preventing the widespread occurrence of stripe rust in wheat largely depends on the identification of new stripe rust resistance genes and the breeding of cultivars with durable resistance. In previous study, we reported 6E of wheat-tetraploid Thinopyrum elongatum 6E (6D) substitution line contains adult-stage stripe rust resistance genes. In this study, three novel wheat-tetraploid Th. elongatum translocation lines were generated from the offspring of a cross between common wheat and the 6E (6D) substitution line. Genomic in situ hybridization (GISH), fluorescence in situ hybridization chromosome painting (FISH painting), repetitive sequential FISH, and 55 K SNP analyses indicated that K227-48, K242-82, and K246-6 contained 42 chromosomes and were 6DL·6ES, 2DL·6EL, and 6DS·6EL translocation lines, respectively. The assessment of stripe rust resistance revealed that K227-48 was susceptible to a mixture of Pst races, whereas the 6EL lines K242-82 and K246-6 were highly resistance to stripe rust at the adult stage. Thus, this resistance was due to the chromosome arm 6EL of tetraploid Th. elongatum. The improved agronomic performance of 6DS·6EL translocation line may be a useful novel germplasm resource for wheat breeding programs. For the application of marker-assisted selection (MAS), 47 simple sequence repeat (SSR) markers were developed, showing specific amplification on the chromosome 6E using the whole-genome sequence of diploid Th. elongatum. The 6DS·6EL translocation line and SSR markers have the potential to be deploy for future stripe rust resistance wheat breeding program. Supplementary Information: The online version contains supplementary material available at 10.1007/s11032-024-01493-6.

13.
BMC Womens Health ; 24(1): 379, 2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38956558

RESUMO

BACKGROUND: Breast cancer has become a major public health problem in the current society, and its incidence rate ranks the first among Chinese female malignant tumors. This paper once again confirmed the efficacy of lncRNA in tumor regulation by introducing the mechanism of the diagnosis of breast cancer by the MIR497HG/miR-16-5p axis. METHODS: The abnormal expression of MIR497HG in breast cancer was determined by RT-qPCR method, and the correlation between MIR497HG expression and clinicopathological characteristics of breast cancer patients was analyzed via Chi-square test. To understand the diagnostic potential of MIR497HG in breast cancer by drawing the receiver operating characteristic curve (ROC). The overexpressed MIR497HG (pcDNA3.1-MIR497HG) was designed and constructed to explore the regulation of elevated MIR497HG on biological function of BT549 and Hs 578T cells through Transwell assays. Additionally, the luciferase gene reporter assay and Pearson analysis evaluated the targeting relationship of MIR497HG to miR-16-5p. RESULTS: MIR497HG was decreased in breast cancer and had high diagnostic function, while elevated MIR497HG inhibited the migration and invasion of BT549 and Hs 578T cells. In terms of functional mechanism, miR-16-5p was the target of MIR497HG, and MIR497HG reversely regulated the miR-16-5p. miR-16-5p mimic reversed the effects of upregulated MIR497HG on cell biological function. CONCLUSIONS: In general, MIR497HG was decreased in breast cancer, and the MIR497HG/miR-16-5p axis regulated breast cancer tumorigenesis, providing effective insights for the diagnosis of patients.


Assuntos
Neoplasias da Mama , MicroRNAs , RNA Longo não Codificante , Humanos , MicroRNAs/genética , Feminino , Neoplasias da Mama/genética , RNA Longo não Codificante/genética , Linhagem Celular Tumoral , Regulação Neoplásica da Expressão Gênica , Movimento Celular/genética , Pessoa de Meia-Idade , Proliferação de Células/genética
14.
Biochem Genet ; 2024 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-38850375

RESUMO

The lateral organ boundaries domain (LBD) plays a vital role as a transcriptional coactivator within plants, serving as an indispensable function in growth, development, and stress response. In a previous study, we found that the LBD genes of Pseudoroegneria libanotica (a maternal donor for three-quarter of perennial Triticeae species with good stress resistance, holds great significance in exploring its response mechanisms to abiotic stress for the Triticeae tribe) might be involved in responding to drought stress. Therefore, we further identified the LBD gene family in this study. A total of 29 PseLBDs were identified. Among them, 24 were categorized into subclass I, while 5 fell into subclass II. The identification of cis-acting elements reveals the extensive involvement of PseLBDs in various biological processes in P. libanotica. Collinearity analysis indicates that 86% of PseLBDs were single-copy genes and have undergone a single whole-genome duplication event. Transcriptomic differential expression analysis of PseLBDs under drought stress reveals that the most likely candidates for responding to abiotic stress were PseLBD1 and PseLBD12. They have been demonstrated to respond to drought, salt, heavy metal, and heat stress in yeast. Furthermore, it is plausible that functional divergence might have occurred among their orthologous genes in wheat. This study not only establishes a foundation for a deeper understanding of the biological roles of PseLBDs in P. libanotica but also unveils novel potential genes for enhancing the genetic background of crops within Triticeae crops, such as wheat.

15.
Plant Dis ; 108(7): 2065-2072, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38381966

RESUMO

Stripe rust, caused by Puccinia striiformis f. sp. tritici, is a destructive wheat disease pathogen. Thinopyrum elongatum is a valuable germplasm including diploid, tetraploid, and decaploid with plenty of biotic and abiotic resistance. In a previous study, we generated a stripe rust-resistant wheat-tetraploid Th. elongatum 1E/1D substitution line, K17-841-1. To further apply the wild germplasm for wheat breeding, we selected and obtained a new homozygous wheat-tetraploid Th. elongatum translocation line, T1BS⋅1EL, using genomic in situ hybridization, fluorescence in situ hybridization (FISH), oligo-FISH painting, and the wheat 55K single nucleotide polymorphism genotyping array. The T1BS⋅1EL is highly resistant to stripe rust at the seedling and adult stages. Pedigree and molecular marker analyses revealed that the resistance gene was located on the chromosome arm 1EL of tetraploid Th. elongatum, tentatively named Yr1EL. In addition, we developed and validated 32 simple sequence repeat markers and two kompetitive allele-specific PCR assays that were specific to the tetraploid Th. elongatum chromosome arm 1EL to facilitate marker-assisted selection for alien 1EL stripe rust resistance breeding. This will help us explore and locate the stripe rust resistance gene mapping on the 1E chromosome and deploy it in the wheat breeding program.


Assuntos
Resistência à Doença , Doenças das Plantas , Poaceae , Puccinia , Tetraploidia , Translocação Genética , Triticum , Triticum/microbiologia , Triticum/genética , Doenças das Plantas/microbiologia , Doenças das Plantas/genética , Doenças das Plantas/imunologia , Resistência à Doença/genética , Poaceae/genética , Poaceae/microbiologia , Puccinia/fisiologia , Cromossomos de Plantas/genética , Basidiomycota/fisiologia , Melhoramento Vegetal , Hibridização in Situ Fluorescente , Polimorfismo de Nucleotídeo Único/genética , Genoma de Planta/genética
16.
Physiol Mol Biol Plants ; 30(3): 467-481, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38633269

RESUMO

The basic helix-loop-helix (bHLH) transcription factor family is the second largest in plants. bHLH transcription factor is not only universally involved in plant growth and metabolism, including photomorphogenesis, light signal transduction, and secondary metabolism, but also plays an important role in plant response to stress. However, the function of bHLH TFs in Pseudoroegneria species has not been studied yet. Pseudoroegneria (Nevski) Á. Löve is a perennial genus of the Triticeae. Pseudoroegneria species are mostly distributed in arid/semi-arid areas and they show good drought tolerance. In this study, we identified 152 PlbHLH TFs in Pseudoroegneria libanotica, which could be classified into 15 groups. Collinearity analysis indicates that 122 PlbHLH genes share homology with wbHLH genes in wheat, and it has lower homology with AtbHLH genes in Arabidopsis. Based on transcriptome profiling under an experiment with three PEG concentrations (0%, 10%, and 20%), 10 up-regulated genes and 11 down-regulated PlbHLH genes were screened. Among them, PlbHLH6, PlbHLH55 and PlbHLH64 as candidate genes may be the key genes related to drought tolerance response at germination, and they have been demonstrated to respond to drought, salt, oxidative, heat, and heavy metal stress in yeast. This study lays the foundation for an in-depth study of the biological roles of PlbHLHs in Pse. libanotica, and discovered new drought-tolerance candidate genes to enhance the genetic background of Triticeae crops. Supplementary Information: The online version contains supplementary material available at 10.1007/s12298-024-01433-w.

17.
Theor Appl Genet ; 136(8): 177, 2023 Aug 04.
Artigo em Inglês | MEDLINE | ID: mdl-37540294

RESUMO

KEY MESSAGE: Chromosome-specific painting probes were developed to identify the individual chromosomes from 1 to 7E in Thinopyrum species and detect alien genetic material of the E genome in a wheat background. The E genome of Thinopyrum is closely related to the ABD genome of wheat (Triticum aestivum L.) and harbors genes conferring beneficial traits to wheat, including high yield, disease resistance, and unique end-use quality. Species of Thinopyrum vary from diploid (2n = 2x = 14) to decaploid (2n = 10x = 70), and chromosome structural variation and differentiation have arisen during polyploidization. To investigate the variation and evolution of the E genome, we developed a complete set of E genome-specific painting probes for identification of the individual chromosomes 1E to 7E based on the genome sequences of Th. elongatum (Host) D. R. Dewey and wheat. By using these new probes in oligonucleotide-based chromosome painting, we showed that Th. bessarabicum (PI 531711, EbEb) has a close genetic relationship with diploid Th. elongatum (EeEe), with five chromosomes (1E, 2E, 3E, 6E, and 7E) maintaining complete synteny in the two species except for a reciprocal translocation between 4 and 5Eb. All 14 pairs of chromosomes of tetraploid Th. elongatum have maintained complete synteny with those of diploid Th. elongatum (Thy14), but the two sets of E genomes have diverged. This study also demonstrated that the E genome-specific painting probes are useful for rapid and effective detection of the alien genetic material of E genome in wheat-Thinopyrum derived lines.


Assuntos
Coloração Cromossômica , Oligonucleotídeos , Oligonucleotídeos/genética , Poaceae/genética , Triticum/genética , Cromossomos
18.
Theor Appl Genet ; 136(6): 146, 2023 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-37258797

RESUMO

KEY MESSAGE: QTgw.saas-5B was validated as a major thousand-grain weight-related QTL in a founder parent used for wheat breeding and then precisely mapped to a 0.6 cM interval. Increasing the thousand-grain weight (TGW) is considered to be one of the most important ways to improve yield, which is a core objective among wheat breeders. Chuanmai42, which is a wheat cultivar with high TGW and a high and stable yield, is a parent of more than 30 new varieties grown in southwestern China. In this study, a Chuanmai42-derived recombinant inbred line (RIL) population was used to dissect the genetic basis of TGW. A major QTL (QTgw.saas-5B) mapped to the Xgwm213-Xgwm540 interval on chromosome 5B of Chuanmai42 explained up to 20% of the phenotypic variation. Using 71 recombinants with a recombination in the QTgw.saas-5B interval identified from a secondary RIL population comprising 1818 lines constructed by crossing the QTgw.saas-5B near-isogenic line with the recurrent parent Chuannong16, QTgw.saas-5B was delimited to a 0.6 cM interval, corresponding to a 21.83 Mb physical interval in the Chinese Spring genome. These findings provide the foundation for QTgw.saas-5B cloning and its use in molecular marker-assisted breeding.


Assuntos
Locos de Características Quantitativas , Triticum , Mapeamento Cromossômico , Triticum/genética , Fenótipo , Melhoramento Vegetal , Grão Comestível/genética , China , Cromossomos de Plantas/genética
19.
Ann Bot ; 132(5): 949-962, 2023 11 30.
Artigo em Inglês | MEDLINE | ID: mdl-37738171

RESUMO

BACKGROUND AND AIMS: Chromosome evolution leads to hybrid dysfunction and recombination patterns and has thus been proposed as a major driver of diversification in all branches of the tree of life, including flowering plants. In this study we used the genus Linum (flax species) to evaluate the effects of chromosomal evolution on diversification rates and on traits that are important for sexual reproduction. Linum is a useful study group because it has considerable reproductive polymorphism (heterostyly) and chromosomal variation (n = 6-36) and a complex pattern of biogeographical distribution. METHODS: We tested several traditional hypotheses of chromosomal evolution. We analysed changes in chromosome number across the phylogenetic tree (ChromEvol model) in combination with diversification rates (ChromoSSE model), biogeographical distribution, heterostyly and habit (ChromePlus model). KEY RESULTS: Chromosome number evolved across the Linum phylogeny from an estimated ancestral chromosome number of n = 9. While there were few apparent incidences of cladogenesis through chromosome evolution, we inferred up to five chromosomal speciation events. Chromosome evolution was not related to heterostyly but did show significant relationships with habit and geographical range. Polyploidy was negatively correlated with perennial habit, as expected from the relative commonness of perennial woodiness and absence of perennial clonality in the genus. The colonization of new areas was linked to genome rearrangements (polyploidy and dysploidy), which could be associated with speciation events during the colonization process. CONCLUSIONS: Chromosome evolution is a key trait in some clades of the Linum phylogeny. Chromosome evolution directly impacts speciation and indirectly influences biogeographical processes and important plant traits.


Assuntos
Linho , Linaceae , Filogenia , Linho/genética , Linaceae/genética , Melhoramento Vegetal , Poliploidia , Cromossomos , Evolução Molecular
20.
Ecotoxicol Environ Saf ; 261: 115101, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37290296

RESUMO

Cadmium (Cd) pollution is a global problem affecting soil ecology and plant growth. Abscisic acid (ABA) acts as a growth and stress hormone, regulates cell wall synthesis, and plays an important role in plant responses to stress. There are few studies on the mechanisms behind abscisic acid alleviation of cadmium stress in Cosmos bipinnatus, especially in regards to regulation of the root cell wall. This study examined the effects of different concentrations of abscisic acid at different concentrations of cadmium stress. Through adding 5 µmol/L and 30 µmol/L cadmium, followed by spraying 10 µmol/L and 40 µmol/L ABA in a hydroponic experiment, it was found that under two concentrations of cadmium stress, low concentration of ABA improved root cell wall polysaccharide, Cd, and uronic acid content. Especially in pectin, after the application of low concentration ABA, the cadmium concentration was significantly increased by 1.5 times and 1.2 times compared with the Cd concentration under Cd5 and Cd30 treatment alone, respectively. Fourier-Transform Infrared spectroscopy (FTIR) demonstrated that cell wall functional groups such as -OH and -COOH were increased with exposure to ABA. Additionally, the exogenous ABA also increased expression of three kinds of antioxidant enzymes and plant antioxidants. The results of this study suggest that ABA could reduce Cd stress by increasing Cd accumulation, promoting Cd adsorption on the root cell wall, and activating protective mechanisms. This result could help promote application of C. bipinnatus for phytostabilization of cadmium-contaminated soil.


Assuntos
Asteraceae , Cádmio , Cádmio/metabolismo , Antioxidantes/farmacologia , Antioxidantes/metabolismo , Ácido Abscísico/farmacologia , Ácido Abscísico/metabolismo , Adsorção , Asteraceae/metabolismo , Parede Celular/metabolismo , Raízes de Plantas/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA