Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 53
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Small ; 19(33): e2300326, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37017497

RESUMO

Tendon adhesion is the most common outcome of tendon or tendon-to-bone healing after injury. Our group developed a hydrogel-nanoparticle sustained-release system previously to inhibit cyclooxygenases (COXs) expression and consequently prevent tendon adhesion and achieved satisfactory results. However, effective treatment of multiple tendon adhesions is always a challenge in research on the prevention of tendon adhesion. In the present study, an M2M@PLGA/COX-siRNA delivery system is successfully constructed using the cell membranes of M2 macrophages and poly (lactic-co-glycolic acid) (PLGA) nanoparticles. Targeting properties and therapeutic effects are observed in mice or rat models of flexor digitorum longus (FDL) tendon injury combined with rotator cuff injury. The results showed that the M2M@PLGA/COX-siRNA delivery system has low toxicity and remarkable targeting properties to the injured areas. Treatment with the M2M@PLGA/COX-siRNA delivery system reduced the inflammatory reaction and significantly improved tendon adhesion in both the FDL tendon and rotator cuff tissues. These findings indicate that the M2M@PLGA delivery system can provide an effective biological strategy for preventing multiple tendon adhesions.


Assuntos
Biomimética , Nanopartículas , Ratos , Camundongos , Animais , RNA Interferente Pequeno/genética , Tendões , Aderências Teciduais/patologia , Aderências Teciduais/prevenção & controle , Inflamação/patologia , Macrófagos
2.
Pharmacol Res ; 197: 106979, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37918583

RESUMO

Circular RNA (circRNA) is one of non-coding RNA with specific circular structure, which has been found to be involved in regulating a series of malignant biological behaviors in many malignant tumors. In this study, based on the IDH1 molecular typing of gliomas, we identified a significant downregulation of circRNA (circIQGAP1) expression in IDH1 mutant gliomas by high-throughput sequencing. In 79 tissue samples, we confirmed that circIQGAP1 expression was significantly downregulated in IDH1 mutant gliomas, and that low circIQGAP1 expression was positively associated with better prognosis. Knockdown of circIQGAP1 in glioma cell lines inhibited glioma cell malignancy and conversely overexpression of circIQGAP1 promoted glioma malignancy. circIQGAP1 regulated glioma cell migration, proliferation, invasion and apoptosis through miR-1256/RCAN1/Bax/Bcl-2/Caspase3 and miR-622/RCAN2/Bax/Bcl-2/Caspase3 axes. These results suggest that circIQGAP1 plays an important role in glioma development, promotes tumor growth, and is a potential therapeutic target for glioma.


Assuntos
Glioma , MicroRNAs , Humanos , RNA Circular/genética , Proteína X Associada a bcl-2 , Glioma/genética , Proteínas Proto-Oncogênicas c-bcl-2 , Fatores de Transcrição , MicroRNAs/genética , Proteínas de Ligação a DNA , Proteínas Musculares
3.
J Nanobiotechnology ; 20(1): 434, 2022 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-36195952

RESUMO

The incidence of myocardial ischaemia‒reperfusion injury (MIRI) is increasing every year, and there is an urgent need to develop new therapeutic approaches. Nrf2 is thought to play a protective role during MIRI and it is regulated by microRNAs (miRNAs). This study focused on PLGA nanoparticles camouflaged by platelet membrane vesicles (PMVs) (i.e., PMVs@PLGA complexes) carrying microRNA inhibitors, which regulate Nrf2 and can play a therapeutic role in the MIRI process. In vitro and in vivo characterization showed that PMVs@PLGA has excellent transfection efficiency, low toxicity and good targeting. MicroRNAs that effectively regulate Nrf2 were identified, and then PMVs@PLGA-miRNA complexes were prepared and used for in vitro and in vivo treatment. PMVs@PLGA-miRNA complexes can effectively target the delivery of inhibitors to cardiomyocytes. Our results suggest that PMVs@PLGA complexes are a novel delivery system and a novel biological approach to the treatment of MIRI.


Assuntos
MicroRNAs , Traumatismo por Reperfusão Miocárdica , Nanopartículas , Plaquetas , Humanos , MicroRNAs/genética , Traumatismo por Reperfusão Miocárdica/tratamento farmacológico , Fator 2 Relacionado a NF-E2
4.
Nano Lett ; 21(7): 3007-3015, 2021 04 14.
Artigo em Inglês | MEDLINE | ID: mdl-33797927

RESUMO

Brain injuries are devastating central nervous system diseases, resulting in cognitive, motor, and sensory dysfunctions. However, clinical therapeutic options are still limited for brain injuries, indicating an urgent need to investigate new therapies. Furthermore, the efficient delivery of therapeutics across the blood-brain barrier (BBB) to the brain is a serious problem. In this study, a facile strategy of dual site-selective functionalized (DSSF) poly(ß-amino esters) was developed using bio-orthogonal chemistry for promoting brain nerve regeneration. Fluorescence colocalization studies demonstrated that these proton-sponge DSSF poly(ß-amino esters) targeted mitochondria through electrostatic interactions. More importantly, this delivery system could effectively accumulate in the injured brain sites and accelerate the recovery of the injured brain. Finally, this DSSF poly(ß-amino esters) platform may provide a new methodology for the construction of dual regioselective carriers in protein/peptide delivery and tissue engineering.


Assuntos
Ésteres , Regeneração Nervosa , Barreira Hematoencefálica , Encéfalo , Engenharia Tecidual
5.
Mol Cancer ; 19(1): 53, 2020 03 12.
Artigo em Inglês | MEDLINE | ID: mdl-32164750

RESUMO

BACKGROUND: The epigenetic regulation of immune response has been demonstrated in recent studies. Nonetheless, potential roles of RNA N6-methyladenosine (m6A) modification in tumor microenvironment (TME) cell infiltration remain unknown. METHODS: We comprehensively evaluated the m6A modification patterns of 1938 gastric cancer samples based on 21 m6A regulators, and systematically correlated these modification patterns with TME cell-infiltrating characteristics. The m6Ascore was constructed to quantify m6A modification patterns of individual tumors using principal component analysis algorithms. RESULTS: Three distinct m6A modification patterns were determined. The TME cell-infiltrating characteristics under these three patterns were highly consistent with the three immune phenotypes of tumors including immune-excluded, immune-inflamed and immune-desert phenotypes. We demonstrated the evaluation of m6A modification patterns within individual tumors could predict stages of tumor inflammation, subtypes, TME stromal activity, genetic variation, and patient prognosis. Low m6Ascore, characterized by increased mutation burden and activation of immunity, indicated an inflamed TME phenotype, with 69.4% 5-year survival. Activation of stroma and lack of effective immune infiltration were observed in the high m6Ascore subtype, indicating a non-inflamed and immune-exclusion TME phenotype, with poorer survival. Low m6Ascore was also linked to increased neoantigen load and enhanced response to anti-PD-1/L1 immunotherapy. Two immunotherapy cohorts confirmed patients with lower m6Ascore demonstrated significant therapeutic advantages and clinical benefits. CONCLUSIONS: This work revealed the m6A modification played a nonnegligible role in formation of TME diversity and complexity. Evaluating the m6A modification pattern of individual tumor will contribute to enhancing our cognition of TME infiltration characterization and guiding more effective immunotherapy strategies.


Assuntos
Adenosina/análogos & derivados , Linfócitos T CD8-Positivos/imunologia , Metilação de DNA , Epigênese Genética , Regulação Neoplásica da Expressão Gênica , Neoplasias Gástricas/imunologia , Microambiente Tumoral/imunologia , Adenosina/química , Apoptose , Biomarcadores Tumorais/genética , Proliferação de Células , Humanos , Prognóstico , Neoplasias Gástricas/genética , Neoplasias Gástricas/patologia , Taxa de Sobrevida , Células Tumorais Cultivadas
6.
Mol Ther ; 27(9): 1534-1546, 2019 09 04.
Artigo em Inglês | MEDLINE | ID: mdl-31278034

RESUMO

How to accelerate tendon healing remains a clinical challenge. In this study, a suture carrying nanoparticle/pEGFP-basic fibroblast growth factor (bFGF) and pEGFP-vascular endothelial growth factor A (VEGFA) complexes was developed to transfer the growth factor genes into injured tendon tissues to promote healing. Polydopamine-modified sutures can uniformly and tightly absorb nanoparticle/plasmid complexes. After tendon tissues were sutured, the nanoparticle/plasmid complexes still existed on the suture surface. Further, we found that the nanoparticle/plasmid complexes delivered into tendon tissues could diffuse from sutures to tendon tissues and effectively transfect genes into tendon cells, significantly increasing the expression of growth factors in tendon tissues. Finally, biomechanical tests showed that nanoparticle/pEGFP-bFGF and pEGFP-VEGFA complex-coated sutures could significantly increase the ultimate strengths of repaired tendons, especially at 4 weeks after operation. Two kinds of nanoparticle/plasmid complex-coated sutures significantly increased flexor tendon healing strength by 3.7 times for Ethilon and 5.8 times for PDS II, respectively, compared with the corresponding unmodified sutures. In the flexor tendon injury model, at 6 weeks after surgery, compared with the control suture, the nanoparticle/plasmid complex-coated sutures can significantly increase the gliding excursions of the tendon and inhibit the formation of adhesion. These results indicate that this nanoparticle/plasmid complex-coated suture is a promising tool for the treatment of injured tendons.


Assuntos
Materiais Revestidos Biocompatíveis , Técnicas de Transferência de Genes , Nanopartículas , Suturas , Traumatismos dos Tendões/genética , Traumatismos dos Tendões/terapia , Transgenes , Cicatrização , Animais , Sobrevivência Celular , Materiais Revestidos Biocompatíveis/química , Modelos Animais de Doenças , Liberação Controlada de Fármacos , Expressão Gênica , Terapia Genética , Cinética , Nanopartículas/química , Nanopartículas/ultraestrutura , Plasmídeos/genética , Transgenes/genética , Fator A de Crescimento do Endotélio Vascular/genética , Fator A de Crescimento do Endotélio Vascular/metabolismo , Cicatrização/genética
7.
J Cell Biochem ; 120(9): 15106-15118, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31020692

RESUMO

Overall survival of patients with low-grade glioma (LGG) has shown no significant improvement over the past 30 years, with survival averaging approximately 7 years. This study aimed to identify novel promising biomarkers of LGG and reveal its potential molecular mechanisms by integrated bioinformatics analysis. The microarray datasets of GSE68848 and GSE4290 were selected from GEO database for integrated analysis. In total, 293 overlapping differentially expressed genes (DEGs) were detected using the limma package. One hundred and eighty-eight nodes with 603 interactions were obtained from the establishment of protein-protein interaction (PPI) network. Functional and signaling pathway enriched were significantly correlated with the synapse and calcium signaling pathway, respectively. Module analysis revealed eight hub genes with high connectivity, which included CHRM1, DLG2, GABRD, GRIN1, HTR2A, KCNJ3, KCNJ9, and NUSAP1, and they were markedly correlated with patients' prognosis. The mining of the Gene Expression Profiling Interactive Analysis database and qPCR further confirmed the abnormal expression of these key genes with their prognostic value in LGG. We eventually predicted the 20 most vital small molecule drugs, which potentially reverse the carcinogenic state of LGG, as per the CMap (connectivity map) database and these DEGs, and MS-275 (enrichment score = -0.939) was considered as the most promising small molecule to treat LGG. In conclusion, our study provided eight reliable novel molecular biomarkers for diagnosis, prognosis prediction, and treatment targets for LGG. These conclusions will contribute to a better comprehension of molecular mechanisms fundamental to LGG occurrence and progression, and providing new insights for future development of genomic individualized treatment in LGG.


Assuntos
Biomarcadores Tumorais/genética , Neoplasias Encefálicas/tratamento farmacológico , Neoplasias Encefálicas/genética , Biologia Computacional , Glioma/tratamento farmacológico , Glioma/genética , Sequenciamento de Nucleotídeos em Larga Escala , Bibliotecas de Moléculas Pequenas/uso terapêutico , Biomarcadores Tumorais/metabolismo , Neoplasias Encefálicas/patologia , Perfilação da Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Glioma/patologia , Humanos , Gradação de Tumores , Mapas de Interação de Proteínas/genética , Bibliotecas de Moléculas Pequenas/farmacologia , Análise de Sobrevida
9.
Mol Pain ; 13: 1744806916688901, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-28326931

RESUMO

Background Cancer-induced pain (CIP) is one of the most severe types of chronic pain with which clinical treatment remains challenging and the involved mechanisms are largely unknown. Suppressor of cytokine signaling 3 (SOCS3) is an important intracellular protein and provides a classical negative feedback loop, thus involving in a wide variety of processes including inflammation and nociception. However, the role of SOCS3 pathway in CIP is poorly understood. The present study was designed to investigate the role of SOCS3 in dorsal root ganglion (DRG) in the development of CIP. Method CIP was established by injection of Walker 256 mammary gland tumor cells into the rat tibia canal. Whole-cell patch clamping and Western blotting were performed. Results Following the development of bone cancer, SOCS3 expression was significantly downregulated in rat DRGs at L2-L5 segments. Overexpression of SOCS3, using lentiviral-mediated production of SOCS3 at spinal cord level, drastically attenuated mechanical allodynia and body weight-bearing difference, but not thermal hyperalgesia in bone cancer rats. In addition, overexpression of SOCS3 reversed the hyperexcitability of DRG neurons innervating the tibia, and reduced abnormal expression of toll-like receptors 4 in the DRGs. Conclusions These results suggest that SOCS3 might be a key molecular involved in the development of complicated cancer pain and that overexpression of SOCS3 might be an important strategy for treatment for mechanical allodynia associated with bone cancer.


Assuntos
Dor do Câncer/terapia , Citocinas/metabolismo , Gânglios Espinais/fisiologia , Terapia Genética/métodos , Hiperalgesia/etiologia , Proteína 3 Supressora da Sinalização de Citocinas/metabolismo , Animais , Dor do Câncer/fisiopatologia , Células Cultivadas , Modelos Animais de Doenças , Regulação para Baixo/efeitos dos fármacos , Regulação para Baixo/genética , Feminino , Gânglios Espinais/citologia , Potenciais da Membrana/efeitos dos fármacos , Potenciais da Membrana/genética , Limiar da Dor/fisiologia , Técnicas de Patch-Clamp , Ratos , Ratos Sprague-Dawley , Células Receptoras Sensoriais/efeitos dos fármacos , Células Receptoras Sensoriais/fisiologia , Estatísticas não Paramétricas , Proteína 3 Supressora da Sinalização de Citocinas/genética , Receptor 3 Toll-Like/metabolismo , Suporte de Carga/fisiologia
10.
Mol Pain ; 11: 15, 2015 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-25885215

RESUMO

Lumbar disc herniation (LDH) is a major cause of discogenic low back pain and sciatica, but the underlying mechanisms remain largely unknown. Hydrogen sulfide (H2S) is becoming recognized for its involvement in a wide variety of processes including inflammation and nociception. The present study was designed to investigate the roles of the H2S signaling pathway in the regulation of expression and function of purinergic receptors (P2XRs) in dorsal root ganglion (DRG) neurons from rats with LDH. LDH was induced by implantation of autologous nucleus pulposus (NP), harvested from rat tail, in lumbar 5 and 6 spinal nerve roots. Implantation of autologous NP induced persistent pain hypersensitivity, which was partially reversed by an intrathecal injection of A317491, a potent inhibitor of P2X3Rs and P2X2/3Rs. The NP induced persistent pain hypersensitivity was associated with the increased expression of P2X3Rs, but not P2X1Rs and P2X2Rs, receptors in L5-6 DRGs. NP implantation also produced a 2-fold increase in ATP-induced intracellular calcium signals in DRG neurons when compared to those of controls (P < 0.05). Interestingly, NP implantation significantly enhanced expression of the endogenous hydrogen sulfide producing enzyme, cystathionine-ß-synthetase (CBS). Systematic administration of O-(Carboxymethyl) hydroxylamine hemihydrochloride (AOAA), an inhibitor of CBS, suppressed the upregulation of P2X3R expression and the potentiation of ATP-induced intracellular calcium signals in DRG neurons (P < 0.05). Intrathecal injection of AOAA markedly attenuated NP induced- persistent pain hypersensitivity. Our results suggest that sensitization of P2X3Rs, which is likely mediated by CBS-H2S signaling in primary sensory neurons, contributes to discogenic pain. Targeting CBS/H2S-P2X3R signaling may represent a potential treatment for neuropathic pain caused by LDH.


Assuntos
Cistationina beta-Sintase/metabolismo , Hipersensibilidade/metabolismo , Deslocamento do Disco Intervertebral/metabolismo , Neuralgia/metabolismo , Receptores Purinérgicos P2X3/metabolismo , Animais , Modelos Animais de Doenças , Gânglios Espinais/metabolismo , Hiperalgesia/fisiopatologia , Masculino , Ratos Sprague-Dawley , Raízes Nervosas Espinhais/metabolismo
11.
J Neurosci ; 33(21): 9028-38, 2013 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-23699514

RESUMO

Patients with long-standing diabetes frequently demonstrate gastric hypersensitivity with an unknown mechanism. The present study was designed to investigate roles for nuclear factor-κB (NF-κB) and the endogenous H2S-producing enzyme cystathionine-ß-synthetase (CBS) signaling pathways by examining cbs gene methylation status in adult rats with diabetes. Intraperitoneal injection of streptozotocin (STZ) produced gastric hypersensitivity in female rats in response to gastric balloon distention. Treatment with the CBS inhibitor aminooxyacetic acid significantly attenuated STZ-induced gastric hypersensitivity in a dose-dependent fashion. Aminooxyacetic acid treatment also reversed hyperexcitability of gastric-specific dorsal root ganglion (DRG) neurons labeled by the dye DiI in diabetic rats. Conversely, the H2S donor NaHS enhanced neuronal excitability of gastric DRG neurons. Expression of CBS and p65 were markedly enhanced in gastric DRGs in diabetic rats. Blockade of NF-κB signaling using pyrrolidine dithiocarbamate reversed the upregulation of CBS expression. Interestingly, STZ treatment led to a significant demethylation of CpG islands in the cbs gene promoter region, as determined by methylation-specific PCR and bisulfite sequencing. STZ treatment also remarkably downregulated the expression of DNA methyltransferase 3a and 3b. More importantly, STZ treatment significantly enhanced the ability of cbs to bind DNA at the p65 consensus site, as shown by chromatin immunoprecipitation assays. Our findings suggest that upregulation of cbs expression is attributed to cbs promoter DNA demethylation and p65 activation and that the enhanced interaction of the cbs gene and p65 contributes to gastric hypersensitivity in diabetes. This finding may guide the development and evaluation of new treatment modalities for patients with diabetic gastric hypersensitivity.


Assuntos
Cistationina beta-Sintase/metabolismo , Diabetes Mellitus Experimental/complicações , Hipersensibilidade , NF-kappa B/metabolismo , Gastropatias/etiologia , Aminoácidos , Análise de Variância , Animais , Área Sob a Curva , Estudos de Casos e Controles , Imunoprecipitação da Cromatina , Ilhas de CpG/efeitos dos fármacos , Ilhas de CpG/fisiologia , Cistationina beta-Sintase/genética , DNA (Citosina-5-)-Metiltransferases/genética , DNA (Citosina-5-)-Metiltransferases/metabolismo , DNA Metiltransferase 3A , Modelos Animais de Doenças , Relação Dose-Resposta a Droga , Eletromiografia , Inibidores Enzimáticos/farmacologia , Feminino , Gânglios Espinais/patologia , Hipersensibilidade/tratamento farmacológico , Hipersensibilidade/etiologia , Potenciais da Membrana/efeitos dos fármacos , Metilação/efeitos dos fármacos , Proteínas de Neoplasias/metabolismo , Proteínas de Transporte Nucleocitoplasmático/metabolismo , Ácido Oxâmico/uso terapêutico , Técnicas de Patch-Clamp , Ratos , Ratos Sprague-Dawley , Células Receptoras Sensoriais/efeitos dos fármacos , Células Receptoras Sensoriais/fisiologia , Gastropatias/tratamento farmacológico , Sulfitos/farmacologia , Regulação para Cima/efeitos dos fármacos , DNA Metiltransferase 3B
12.
Wound Repair Regen ; 22(1): 111-8, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24393159

RESUMO

In this study of a tendon injury model, we investigated how injection of a vector incorporating one growth factor gene changes expression levels of multiple growth factor genes in the healing process. The flexor tendon of chicken toes was completely cut and repaired surgically. The tendons in the experimental arm were injected with an adeno-associated virus-2 vector incorporating basic fibroblast growth-factor gene, whereas the tendons in the control arm were not injected or injected with sham vectors. Using real-time polymerase chain reaction, we found that, within the tendon healing period, a set of growth factor genes-transforming growth factor-ß1, vascular endothelial growth factor, and connective tissue growth factor-were significantly up-regulated. Expression of the platelet-derived growth factor-B gene was not changed, and the insulin-like growth factor was down-regulated. A tendon marker gene, scleraxis, was significantly up-regulated in the period. Our study revealed an intriguing finding that introduction of one growth factor gene in the healing tendon modulated expression of multiple growth factor genes. We believe this study may have significant implications in determining the approach of gene therapy, and the findings substantiate that gene therapy using a single growth factor could affect multiple growth factors.


Assuntos
Dependovirus/metabolismo , Fator 2 de Crescimento de Fibroblastos/genética , Peptídeos e Proteínas de Sinalização Intercelular/genética , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Traumatismos dos Tendões/patologia , Cicatrização , Animais , Proteínas Aviárias/genética , Proteínas Aviárias/metabolismo , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Galinhas , Fator de Crescimento do Tecido Conjuntivo/genética , Fator de Crescimento do Tecido Conjuntivo/metabolismo , Regulação para Baixo , Técnicas de Transferência de Genes , Terapia Genética/métodos , Vetores Genéticos , Fator de Crescimento Insulin-Like I/genética , Fator de Crescimento Insulin-Like I/metabolismo , Proteínas Proto-Oncogênicas c-sis/genética , Proteínas Proto-Oncogênicas c-sis/metabolismo , Reação em Cadeia da Polimerase em Tempo Real , Dedos do Pé , Fator de Crescimento Transformador beta/genética , Fator de Crescimento Transformador beta/metabolismo , Regulação para Cima , Fator A de Crescimento do Endotélio Vascular/genética , Fator A de Crescimento do Endotélio Vascular/metabolismo , Cicatrização/genética
13.
Mol Pain ; 9: 4, 2013 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-23413915

RESUMO

BACKGROUND: Hydrogen sulfide (H2S), an endogenous gaseotransmitter/modulator, is becoming appreciated that it may be involved in a wide variety of processes including inflammation and nociception. However, the role and mechanism for H2S in nociceptive processing in trigeminal ganglion (TG) neuron remains unknown. The aim of this study is to investigate distribution of endogenous H2S synthesizing enzyme cystathionine-ß-synthetase (CBS) expression and role of H2S on excitability and voltage-gated potassium channels of TG neurons. METHODS: Immunofluorescence studies were carried out to determine whether CBS was co-expressed in Kv1.1 or Kv1.4-positive TG neurons. Whole cell patch clamp recordings were employed on acutely isolated TG neurons from adult male Sprague Dawley rats (6-8 week old). von Frey filaments were used to examine the pain behavioral responses in rats following injection of sodium hydrosulfide. RESULTS: In rat TG, 77.3±6.6% neurons were immunoreactive for CBS, 85.1±3.8% for Kv1.1 and 97.8±1.1% for Kv1.4. Double staining showed that all CBS labeled cells were Kv1.1 and Kv1.4 positive, but only 92.2±6.1% of Kv1.1 and 78.2±9.9% of Kv1.4 positive cells contained CBS. Application of H2S donor NaHS (250 µM) led to a significant depolarization of resting membrane potential recorded from TG neurons. NaHS application also resulted in a dramatic reduction in rheobase, hyperpolarization of action potential threshold, and a significant increase in the number of action potentials evoked at 2X and 3X rheobase stimulation. Under voltage-clamp conditions, TG neurons exhibited transient A-type (IA) and sustained outward rectifier K+ currents (IK). Application of NaHS did suppress IK density while did not change IA density of TG neurons (n=6). Furthermore, NaHS, a donor of hydrogen sulfide, produced a significant reduction in escape threshold in a dose dependent manner. CONCLUSION: These data suggest that endogenous H2S generating enzyme CBS was co-localized well with Kv1.1 and Kv1.4 in TG neurons and that H2S produces the mechanic pain and increases neuronal excitability, which might be largely mediated by suppressing IK density, thus identifying for the first time a specific molecular mechanism underlying pain and sensitization in TG.


Assuntos
Sulfeto de Hidrogênio/farmacologia , Ativação do Canal Iônico/efeitos dos fármacos , Canal de Potássio Kv1.1/metabolismo , Canal de Potássio Kv1.4/metabolismo , Potenciais da Membrana/efeitos dos fármacos , Gânglio Trigeminal/fisiopatologia , Potenciais de Ação/efeitos dos fármacos , Animais , Cistationina beta-Sintase/metabolismo , Hiperalgesia/patologia , Hiperalgesia/fisiopatologia , Masculino , Neurônios/efeitos dos fármacos , Neurônios/enzimologia , Ratos , Ratos Sprague-Dawley , Gânglio Trigeminal/efeitos dos fármacos , Gânglio Trigeminal/enzimologia , Gânglio Trigeminal/patologia
15.
Stem Cells Int ; 2023: 4387630, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36655033

RESUMO

Tendons are an important part of the musculoskeletal system. Connecting muscles to bones, tendons convert force into movement. Tendon injury can be acute or chronic. Noticeably, tendon healing requires a long time span and includes inflammation, proliferation, and remodeling processes. The mismatch between endogenous and exogenous healing may lead to adhesion causing further negative effects. Management of tendon injuries and complications such as subsequent adhesion formation are still challenges for clinicians. Due to numerous factors, tendon healing is a complex process. This review introduces the role of various biological and mechanical factors and epigenetic regulation processes involved in tendon healing.

16.
Clin Transl Oncol ; 25(4): 959-975, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36447119

RESUMO

OBJECTIVES: This study developed a new model for risk assessment of immuno-glycolysis-related genes for lung adenocarcinoma (LUAD) patients to predict prognosis and immunotherapy efficacy. METHODS: LUAD samples and data obtained from the Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) databases are used as training and test columns, respectively. Twenty-two (22) immuno-glycolysis-related genes were screened, the patients diagnosed with LUAD were divided into two molecular subtypes by consensus clustering of these genes. The initial prognosis model was developed using the multiple regression analysis method and Receiver Operating characteristic (ROC) analysis was used to verify its predictive potential. Gene set enrichment analysis (GSEA) showed the immune activities and pathways in different risk populations, we calculated immune checkpoints, immune escape, immune phenomena (IPS), and tumor mutation burden (TMB) based on TCGA datasets. Finally, the relationship between the model and drug sensitivity was analyzed. RESULTS: Fifteen (15) key differentially expressed genes (DEGs) with prognostic value were screened and a new prognostic model was constructed. Four hundred and forty-three (443) samples were grouped into two different risk cohorts based on median model risk values. It was observed that survival rates in high-risk groups were significantly low. ROC curves were used to evaluate the model's accuracy in determining the survival time and clinical outcome of LUAD patients. Cox analysis of various clinical factors proved that the risk score has great potential as an independent prognostic factor. The results of immunological analysis can reveal the immune infiltration and the activity of related functions in different pathways in the two risk groups, and immunotherapy was more effective in low-risk patients. Most chemotherapeutic agents are more sensitive to low-risk patients, making them more likely to benefit. CONCLUSION: A novel prognostic model for LUAD patients was established based on IGRG, which could more accurately predict the prognosis and an effective immunotherapy approach for patients.


Assuntos
Adenocarcinoma de Pulmão , Neoplasias Pulmonares , Humanos , Prognóstico , Adenocarcinoma de Pulmão/genética , Fatores de Risco , Análise por Conglomerados , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/terapia
17.
J Thorac Dis ; 15(3): 1018-1035, 2023 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-37065546

RESUMO

Background: The process of lucubrating into lung adenocarcinoma (LUAD) is of profound clinical and practical significance in improving the prognosis of LUAD patients. Multiple biomarkers are reportedly involved in the proliferation or metastasis of adenocarcinoma. However, whether the ADCY9 gene influences the development of LUAD remains unknown. Therefore, we aimed to elucidate the relationship between the expression of ADCY9 and the proliferation and migration of LUAD. Methods: The ADCY9 gene was filtered via a survival analysis of LUAD acquired from the Gene Expression Omnibus (GEO). Then, we conducted a validation analysis and ADCY9-microRNA, microRNA-lncRNA, and ADCY9-lncRNA targeting relationship analysis through the data obtained from The Cancer Genome Atlas (TCGA) dataset. The survival curve, correlation, and prognostic analysis were implemented through bioinformatics methods. Both protein and mRNA expression levels of LUAD cell lines and LUAD patient samples (80 pairs) were detected using western blot assays and quantitative real-time polymerase chain reaction (qRT-PCR). An immunohistochemistry assay was performed to display the correlation between the expression level of the ADCY9 gene and prognosis in LUAD patients (2012-2013; n=115). Overexpression of cell lines SPCA1 and A549 were used for a series of cell function assays. Results: Compared with the expression level in adjacent normal tissues, ADCY9 expression was downregulated in LUAD tissues. Based on the result of the survival curve analysis, high expression of ADCY9 may lead to a better prognosis and may be seen as an independent predictor for LUAD patients. High expression of ADCY9-related microRNA hsa-miR-7-5p may lead to a worse prognosis, and high expression of hsa-miR-7-5p-related lncRNAs may lead to the opposite effects. Overexpression of ADCY9 restrained the proliferation, invasion, and migration abilities of SPCA1, A549 cells. Conclusions: Results indicate that the ADCY9 gene acts as a tumor suppressor to restrain the proliferation, migration, and invasion in LUAD and can lead to a better survival or prognosis in LUAD patients.

18.
Int J Nanomedicine ; 18: 1131-1143, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36915698

RESUMO

Introduction: Esketamine, one of the few non-opioid potent analgesics, has demonstrated efficacy in the treatment of various chronic pain, particularly neuropathic pain. However, its potential clinical applications are confined due to its short half-life and severe side effects including delirium, hallucinations, and other psychiatric symptoms. Here, we reported a nanosized drug delivery system for sustained-release esketamine based on polylactic-co-glycolic acid (PLGA) nanoparticles and hyaluronic acid (HA) hydrogel. Results: In this study, esketamine in the delivery system was continuously released in vitro for at least 21 days, and spinal nerve root administration of the delivery system successfully attenuated (spinal nerve ligation) SNL-induced pain hypersensitivity for at least 14 days. Notably, the excitability of neurons in murine dorsal root ganglion (DRG) was inhibited and the activation of astrocytes in the spinal cord was additionally reduced after administration. Finally, there was no obvious pathophysiological change in the nerves at the administration site after treatment at 14 days. Conclusion: These results indicate that the sustained-release esketamine based on the nanoparticle-hydrogel delivery system can safely produce a lasting analgesic effect on SNL mice, and its mechanism might be related to modulating the activation of astrocytes in the spinal cord and inhibiting the excitability of neurons in DRG.


Assuntos
Hidrogéis , Neuralgia , Ratos , Camundongos , Animais , Ratos Sprague-Dawley , Preparações de Ação Retardada , Neuralgia/tratamento farmacológico , Gânglios Espinais
19.
J Thorac Dis ; 15(6): 3054-3068, 2023 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-37426132

RESUMO

Background: Idiopathic pulmonary fibrosis (IPF), a type of interstitial lung disease (ILD), is a chronic disease with an unknown etiology. The occurrence of lung cancer (LC) is one of the main causes of death in patients with IPF. However, the pathogenesis driving these malignant transformations remains unclear; therefore, this study aimed to identify the shared genes and functional pathways associated with both disease conditions. Methods: Data were downloaded from The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) databases. To identify overlapping genes in both diseases, the "limma" package in R software and weighted gene coexpression network analysis (WGCNA) were used. Venn diagrams were used to obtain the shared genes. The diagnostic value of the shared genes was assessed using receiver operating characteristic (ROC) curve analysis. Gene Ontology (GO) term enrichment was performed on the shared genes between lung adenocarcinoma (LUAD) and IPF, and the genes were also functionally enriched using Metascape. A protein-protein interaction (PPI) network was created using the Search Tool for the Retrieval of Interacting Genes/Proteins (STRING) database. Finally, the link between shared genes and common antineoplastic medicines was investigated using the CellMiner database. Results: The coexpression modules associated with LUAD and IPF were discovered using WGCNA, and 148 genes were found to overlap. In addition, 74 upregulated and 130 downregulated overlapping genes were obtained via differential gene analysis. Functional analysis of the genes revealed that these genes are primarily engaged in extracellular matrix (ECM) pathways. Furthermore, COL1A2, POSTN, COL5A1, CXCL13, CYP24A1, CXCL14, and BMP2 were identified as potential biomarkers in patients with LUAD secondary to IPF showing good diagnostic values. Conclusions: ECM-related mechanisms may be the underlying link between LC and IPF. A total of 7 shared genes were identified as potential diagnostic markers and therapeutic targets for LUAD and IPF.

20.
Eur J Med Res ; 28(1): 476, 2023 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-37915086

RESUMO

Keloid formation is a pathological consequence resulting from cutaneous irritation and injury, primarily attributed to excessive collagen matrix deposition and fibrous tissue proliferation. Chronic inflammation, left uncontrolled over an extended period, also stands as a substantial contributing factor. The precise mechanisms underlying keloid formation remain unclear. Therefore, this study aimed to identify key genes for diagnostic purposes. To achieve this, we used two Gene Expression Omnibus (GEO) data sets to identify differentially expressed genes. We identified one particular gene, homeobox C9 (HOXC9), using a thorough strategy involving two algorithms (least absolute shrinkage and selection operator and support vector machine-recursive feature elimination) and weighted gene co-expression network analysis. We then assessed its expression in normal and keloid tissues. In addition, we explored its temporal expression patterns via Mfuzz time clustering analysis. In our comprehensive analysis, we observed that immune infiltration, as well as cell proliferation, are crucial to keloid formation. Thus, we investigated immune cell infiltration in the keloid and normal groups, as well as the correlation between HOXC9 and these immune cells. It was found that HOXC9 was closely associated with the immune microenvironment of keloids. This shows that HOXC9 can serve as a potential biomarker and therapeutic target for keloids.


Assuntos
Queloide , Humanos , Queloide/genética , Algoritmos , Biomarcadores , Proliferação de Células/genética , Biologia Computacional , Inflamação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA