Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
J Hazard Mater ; 473: 134698, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-38788587

RESUMO

Zero-valent iron (ZVI) has been extensively studied for its capacity to remove various contaminants in the environments. However, whether ZVI affects bacterial resistance to antibiotics has not been fully explored. Herein, it was unexpected that, compared with microscale ZVI (mZVI), nanoscale ZVI (nZVI) facilitated the susceptibility of Pseudomonas aeruginosa (P. aeruginosa) to chloramphenicol (CAP), with a decrease in the minimal inhibitory concentration (MIC) of about 60 %, demonstrating a nanosize-specific effect. nZVI enhanced CAP accumulation in P. aeruginosa via inhibitory effect on efflux pumps activated by MexT, thus conferring the susceptibility of P. aeruginosa to CAP. Circular dichroism spectroscopy revealed that the structure of MexT was changed during the evolution. More importantly, molecular dynamic simulations uncovered that, once the structure of MexT changed, it would be more likely to interact with nZVI, resulting in more serious changes in its secondary structure, which was consistent with the increasing susceptibility of P. aeruginosa to CAP. Collectively, this study elucidated the size-specific effect and the underlying mechanism of ZVI on the bacterial evolution of susceptibility toward antibiotics, highlighting the potentials of nZVI-based technologies on the prevention of bacterial resistance to antibiotics, one of the most important issue for globally public health.


Assuntos
Antibacterianos , Cloranfenicol , Farmacorresistência Bacteriana , Ferro , Testes de Sensibilidade Microbiana , Pseudomonas aeruginosa , Pseudomonas aeruginosa/efeitos dos fármacos , Cloranfenicol/farmacologia , Cloranfenicol/química , Antibacterianos/farmacologia , Antibacterianos/química , Ferro/química , Farmacorresistência Bacteriana/efeitos dos fármacos , Nanopartículas Metálicas/química , Simulação de Dinâmica Molecular , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/química , Proteínas de Bactérias/genética
2.
Eur J Pharmacol ; 956: 175949, 2023 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-37541377

RESUMO

In recent years, research on tetracycline antibiotics has gradually shifted from their antibacterial effects to anticancer effects. Doxycycline, minocycline, and tigecycline as the US Food and Drug Administration (FDA) approved tetracycline antibiotics have been the main subjects of studies. Evidence indicated that they have anticancer properties and are able to control cancer progression through different mechanisms, such as anti-proliferation, anti-metastasis, and promotion of autophagy or apoptosis. In addition, studies have shown that these three tetracycline antibiotics can be utilized in conjunction with chemotherapeutic and targeted drugs to inhibit cancer progression and improve the quality of patient survival. Therefore, doxycycline, minocycline, and tigecycline are taken as examples in this work. Their mechanisms of action in different cancers and related combination therapies are introduced. Their current roles in alleviating the suffering of patients undergoing chemotherapy when used as adjuvant drugs in clinical treatment are also described. Finally, the research gaps and potential research directions at this stage are briefly summarized.


Assuntos
Antineoplásicos , Compostos Heterocíclicos , Neoplasias , Humanos , Doxiciclina/farmacologia , Minociclina/farmacologia , Minociclina/uso terapêutico , Tigeciclina , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Neoplasias/tratamento farmacológico , Neoplasias/induzido quimicamente
3.
ACS Nano ; 17(24): 24685-24695, 2023 Dec 26.
Artigo em Inglês | MEDLINE | ID: mdl-38048441

RESUMO

Metal nanoparticles (MNPs) have recently gained extensive attention due to their broad-spectrum prospect, particularly in biomedical application. Here, we reveal that long-term exposure to platinum nanoparticles (Pt NPs) increases the susceptibility of Pseudomonas aeruginosa PAO1 to imipenem and ciprofloxacin. We exposed PAO1 to Pt NPs (a series of doses, varying from 0.125 to 35 µg/mL) for 60 days and characterized the evolved strains (ES) and compared with wild type (WT) to understand the mechanism of heightened sensitivity. We found that overexpression of oprD and downregulation of mexEF-oprN facilitate the intracellular accumulation of antibiotic, thus increasing susceptibility. Furthermore, loss-of-function mutations were discovered in regulators lasR and mexT. Cloning intact lasR from wild-type (WT) into ES slightly improves imipenem resistance. Strikingly, cloning mexT from WT into ES reverts the imipenem and ciprofloxacin resistance to the original level. Briefly, the increase of membrane permeability controlled by mexT made PAO1 greatly susceptible to imipenem and ciprofloxacin, and the decrease of quorum sensing mediated by lasR made PAO1 slightly susceptible to imipenem. Overall, these results reveal an antibiotic susceptibility mechanism from prolonged exposure to MNPs, which provides a promising approach to prevent antibiotic resistance.


Assuntos
Nanopartículas Metálicas , Infecções por Pseudomonas , Humanos , Imipenem/farmacologia , Ciprofloxacina/farmacologia , Pseudomonas aeruginosa , Platina/farmacologia , Antibacterianos/farmacologia , Mutação , Testes de Sensibilidade Microbiana , Proteínas de Bactérias/genética
4.
Phytomedicine ; 118: 154919, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37392673

RESUMO

BACKGROUND: Pulmonary fibrosis (PF) is an irreversible and fatal lung disease with limited therapeutic options. G protein-coupled receptor 40 (GPR40) has been developed as a promising therapeutic target for metabolic disorders and functions potently in varied pathological and physiological processes. Vincamine (Vin) is a monoterpenoid indole alkaloid originated from Madagascar periwinkle and was reported as a GPR40 agonist in our previous work. PURPOSE: Here, we aimed to clarify the role of GPR40 in PF pathogenesis by using the determined GPR40 agonist Vin as a probe and explore the potential of Vin in ameliorating PF in mice. METHODS: Pulmonary GPR40 expression alterations were assessed in both PF patients and bleomycin-induced PF mice (PF mice). Vin was used to evaluate the therapeutic potential of GPR40 activation for PF and the underlying mechanism was intensively investigated by assays against GPR40 knockout (Ffar1-/-) mice and the cells transfected with si-GPR40 in vitro. RESULTS: Pulmonary GPR40 expression level was highly downregulated in PF patients and PF mice. Pulmonary GPR40 deletion (Ffar1-/-) exacerbated pulmonary fibrosis as evidenced by the increases in mortality, dysfunctional lung index, activated myofibroblasts and extracellular matrix (ECM) deposition in PF mice. Vin-mediated pulmonary GPR40 activation ameliorated PF-like pathology in mice. Mechanistically, Vin suppressed ECM deposition by GPR40/ß-arrestin2/SMAD3 pathway, repressed inflammatory response by GPR40/NF-κB/NLRP3 pathway and inhibited angiogenesis by decreasing GPR40-mediated vascular endothelial growth factor (VEGF) expression in the region of interface to normal parenchyma in pulmonary fibrotic tissues of mice. CONCLUSION: Pulmonary GPR40 activation shows promise as a therapeutic strategy for PF and Vin exhibits high potential in treating this disease.


Assuntos
Fibrose Pulmonar , Vincamina , Animais , Camundongos , Bleomicina/farmacologia , Pulmão/patologia , Fibrose Pulmonar/tratamento farmacológico , Fibrose Pulmonar/induzido quimicamente , Receptores Acoplados a Proteínas G/metabolismo , Fator A de Crescimento do Endotélio Vascular/farmacologia , Vincamina/toxicidade
5.
Artigo em Inglês | MEDLINE | ID: mdl-35862331

RESUMO

The multilayer perceptron (MLP) neural network is interpreted from the geometrical viewpoint in this work, that is, an MLP partition an input feature space into multiple nonoverlapping subspaces using a set of hyperplanes, where the great majority of samples in a subspace belongs to one object class. Based on this high-level idea, we propose a three-layer feedforward MLP (FF-MLP) architecture for its implementation. In the first layer, the input feature space is split into multiple subspaces by a set of partitioning hyperplanes and rectified linear unit (ReLU) activation, which is implemented by the classical two-class linear discriminant analysis (LDA). In the second layer, each neuron activates one of the subspaces formed by the partitioning hyperplanes with specially designed weights. In the third layer, all subspaces of the same class are connected to an output node that represents the object class. The proposed design determines all MLP parameters in a feedforward one-pass fashion analytically without backpropagation. Experiments are conducted to compare the performance of the traditional backpropagation-based MLP (BP-MLP) and the new FF-MLP. It is observed that the FF-MLP outperforms the BP-MLP in terms of design time, training time, and classification performance in several benchmarking datasets. Our source code is available at https://colab.research.google.com/drive/1Gz0L8A-nT4ijrUchrhEXXsnaacrFdenn?usp = sharing.

6.
Front Pharmacol ; 13: 969422, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36091779

RESUMO

Puerarin is a flavonoid molecule that widely exists in various plants. Puerarin has been reported to exhibit anti-tumor effects in various cancers. However, its exact underlying pharmacological mechanism is unclear. This study evaluated the anticancer effect of puerarin combined with oxaliplatin (OXA) in vitro and in vivo. Our results indicated that puerarin can reverse platinum-based anti-cancer drug resistance, and enhance the OXA's anticancer effects on breast cancer. Furthermore, puerarin can inhibit migration and reverse the epithelial-mesenchymal transition (EMT) induced by low-dose OXA. Further studies showed that the carbonic anhydrase (CA) XII is a potential target of puerarin. In conclusion, puerarin is expected to become an adjuvant chemotherapy drug and potentially become one of the medicated foods for breast cancer patients.

7.
Water Res ; 201: 117314, 2021 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-34146763

RESUMO

Photocatalytic activation of molecular oxygen (O2) is a promising way in oxidative degradation of organic pollutants. However, it suffers from low efficiency mainly due to the limited active sites for O2 activation over traditional photocatalysts. Therefore, we established a single atomic Ag-g-C3N4 (SAACN) catalyst with 10 wt% loading of Ag single sites for boosting the O2 activation during the degradation of tetracycline (TC), and 10 wt% loading of nanoparticle Ag-g-C3N4 (NPACN) was studied as a comparison. When using SAACN, the accumulative concentration of superoxide (•O2-), hydroxyl radical (•OH), singlet oxygen (1O2) reached up to 0.66, 0.19, 0.33 mmol L-1h-1, respectively, within 120 min, 11.7, 5.7 and 4.9 times compared with those using NPACN, representing 17.24% of dissolved O2 was converted to reactive oxygen species (ROS). When additionally feeding air or O2, the accumulative concentrations of •O2-, •OH, 1O2 were even higher (air: 4.21, 0.97, 2.02 mmol L-1 h-1; O2: 17.13, 1.32, 9.00 mmol L-1 h-1). The rate constants (k) for degrading the TC were 0.0409 min-1 over SAACN and 0.00880 min-1 over NPACN, respectively (mineralization rate: 95.7% vs. 59.9% after 3 h of degradation). Moreover, the degradation ability of SAACN did not decrease in a wide range of pH value (4-10) or under low temperature (10 °C). Besides the high exposure of Ag single sites, other advances of SAACN were: 1(O2 was more energetic favorable to adsorb on single atomic Ag sites; 2) Positive Ag single sites were easier to obtain the electrons from the surrounding N atoms, and facilitated electron transfer towards adsorbed O2.


Assuntos
Prata , Tetraciclina , Antibacterianos , Catálise , Oxigênio
8.
Biomaterials ; 279: 121233, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34749073

RESUMO

Photothermal therapy (PTT) is a promising strategy for the treatment of advanced malignant neoplasm. However, the anti-tumor efficacy by PTT alone is insufficient to control tumor growth and metastasis. Here, we report a multifunctional nanotherapeutic system exerting a combined PTT and immunotherapy to synergistically enhance the therapeutic effect on melanoma. In particular, we selected the semiconductor nanomaterial copper sulfide (CuS), which served not only as a near-infrared (NIR) light-triggered photothermal converter for tumor hyperthermia but as a basic carrier to modify Cas9 ribonucleoprotein targeting PTPN2 on its surface. Efficient PTPN2 depletion was observed after the treatment of CuS-RNP@PEI nanoparticles, which caused the accumulation of intratumoral infiltrating CD8 T lymphocytes in tumor-bearing mice and upregulated the expression levels of IFN-ᵧ and TNF-α in tumor tissue, thus sensitizing tumors to immunotherapy. In addition, the effect worked synergistically with tumor ablation and immunogenic cell death (ICD) induced by PTT to amplify anti-tumor efficacy. Taken together, this exogenously controlled method provides a simple and effective treatment option for advanced malignant neoplasm.


Assuntos
Hipertermia Induzida , Nanopartículas , Neoplasias , Animais , Sistemas CRISPR-Cas , Linhagem Celular Tumoral , Cobre , Imunoterapia , Camundongos , Neoplasias/terapia , Fototerapia , Proteína Tirosina Fosfatase não Receptora Tipo 2 , Ribonucleoproteínas , Sulfetos
9.
Sci Bull (Beijing) ; 65(24): 2107-2119, 2020 Dec 30.
Artigo em Inglês | MEDLINE | ID: mdl-36732964

RESUMO

Advanced oxidation processes (AOPs) have been applied to address multiple environmental concerns including antibiotic resistance genes (ARGs). ARGs have shown an increasing threat to human health, and they are either harbored by antibiotic-resistant bacteria (ARB) or free in the environment. However, the control of ARGs has been substantially limited by their low concentration and the limited knowledge about their interfacial behavior. Herein, a novel AOP catalyst, Ag/TiO2/graphene oxide (GO), combined with a polyvinylidene fluoride (PVDF) ultrafiltration membrane was designed with a synergistic interfacial adsorption and oxidation function to inactivate ARGs with high efficiency in both model solutions and in secondary wastewater effluent, especially when the residue concentration was low. Further analysis showed that the mineralization of bases and phosphodiesters mainly caused the inactivation of ARGs. Moreover, the interfacial adsorption and oxidation processes of ARGs were studied at the molecular level. The results showed that GO was rich in sp2 backbones and functional oxygen groups, which efficiently captured and enriched the ARGs via π-π interactions and hydrogen bonds. Therefore, the photogenerated active oxygen species attack the ARGs by partially overcoming the kinetic problems in this process. The Ag/TiO2/GO catalyst was further combined with a PVDF membrane to test its potential in wastewater treatment applications. This work offers an efficient method and a corresponding material for the inactivation and mineralization of intra/extracellular ARGs. Moreover, the molecular-level understanding of ARG behaviors on a solid-liquid interface will inspire further control strategies of ARGs in the future.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA