Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
Mais filtros

Base de dados
Assunto principal
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Nature ; 594(7861): 41-45, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-34079139

RESUMO

Owing to the inevitable loss in communication channels, the distance of entanglement distribution is limited to approximately 100 kilometres on the ground1. Quantum repeaters can circumvent this problem by using quantum memory and entanglement swapping2. As the elementary link of a quantum repeater, the heralded distribution of two-party entanglement between two remote nodes has only been realized with built-in-type quantum memories3-9. These schemes suffer from the trade-off between multiplexing capacity and deterministic properties and hence hinder the development of efficient quantum repeaters. Quantum repeaters based on absorptive quantum memories can overcome such limitations because they separate the quantum memories and the quantum light sources. Here we present an experimental demonstration of heralded entanglement between absorptive quantum memories. We build two nodes separated by 3.5 metres, each containing a polarization-entangled photon-pair source and a solid-state quantum memory with bandwidth up to 1 gigahertz. A joint Bell-state measurement in the middle station heralds the successful distribution of maximally entangled states between the two quantum memories with a fidelity of 80.4 ± 2.2 per cent (±1 standard deviation). The quantum nodes and channels demonstrated here can serve as an elementary link of a quantum repeater. Moreover, the wideband absorptive quantum memories used in the nodes are compatible with deterministic entanglement sources and can simultaneously support multiplexing, which paves the way for the construction of practical solid-state quantum repeaters and high-speed quantum networks.

2.
Phys Rev Lett ; 129(21): 210501, 2022 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-36461974

RESUMO

Quantum memories at telecom wavelengths are crucial for the construction of large-scale quantum networks based on existing fiber networks. On-demand storage of telecom photonic qubits is an essential request for such networking applications but yet to be demonstrated. Here we demonstrate the storage and on-demand retrieval of telecom photonic qubits using a laser-written waveguide fabricated in an ^{167}Er^{3+}:Y_{2}SiO_{5} crystal. Both ends of the waveguide memory are directly connected with fiber arrays with a fiber-to-fiber efficiency of 51%. Storage fidelity of 98.3(1)% can be obtained for time-bin qubits encoded with single-photon-level coherent pulses, which is far beyond the maximal fidelity that can be achieved with a classical measure and prepared strategy. This device features high reliability and easy scalability, and it can be directly integrated into fiber networks, which could play an essential role in fiber-based quantum networks.

3.
Phys Rev Lett ; 128(18): 180501, 2022 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-35594095

RESUMO

Photonic polarization qubits are widely used in quantum computation and quantum communication due to the robustness in transmission and the easy qubit manipulation. An integrated quantum memory for polarization qubits is a useful building block for large-scale integrated quantum networks. However, on-demand storing polarization qubits in an integrated quantum memory is a long-standing challenge due to the anisotropic absorption of solids and the polarization-dependent features of microstructures. Here we demonstrate a reliable on-demand quantum memory for polarization qubits, using a depressed-cladding waveguide fabricated in a ^{151}Eu^{3+}:Y_{2}SiO_{5} crystal. The site-2 ^{151}Eu^{3+} ions in Y_{2}SiO_{5} crystal provides a near-uniform absorption for arbitrary polarization states and a new pump sequence is developed to prepare a wideband and enhanced absorption profile. A fidelity of 99.4±0.6% is obtained for the qubit storage process with an input of 0.32 photons per pulse, together with a storage bandwidth of 10 MHz. This reliable integrated quantum memory for polarization qubits reveals the potential for use in the construction of integrated quantum networks.

4.
Phys Rev Lett ; 125(26): 260504, 2020 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-33449731

RESUMO

Photonic quantum memory is the core element in quantum information processing (QIP). For the scalable and convenient practical applications, great efforts have been devoted to the integrated quantum memory based on various waveguides fabricated in solids. However, on-demand storage of qubits, which is an essential requirement for QIP, is still challenging to be implemented using such integrated quantum memory. Here we report the on-demand storage of time-bin qubits in an on-chip waveguide memory fabricated on the surface of a ^{151}Eu^{3+}:Y_{2}SiO_{5} crystal, utilizing the Stark-modulated atomic frequency comb protocol. A qubit storage fidelity of 99.3%±0.2% is obtained with single-photon-level coherent pulses, far beyond the highest fidelity achievable using the classical measure-and-prepare strategy. The developed integrated quantum memory with the on-demand retrieval capability represents an important step toward practical applications of integrated quantum nodes in quantum networks.

5.
Phys Rev Lett ; 124(22): 223601, 2020 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-32567924

RESUMO

Solid-state color centers with manipulatable spin qubits and telecom-ranged fluorescence are ideal platforms for quantum communications and distributed quantum computations. In this work, we coherently control the nitrogen-vacancy (NV) center spins in silicon carbide at room temperature, in which telecom-wavelength emission is detected. We increase the NV concentration sixfold through optimization of implantation conditions. Hence, coherent control of NV center spins is achieved at room temperature, and the coherence time T_{2} can be reached to around 17.1 µs. Furthermore, an investigation of fluorescence properties of single NV centers shows that they are room-temperature photostable single-photon sources at telecom range. Taking advantage of technologically mature materials, the experiment demonstrates that the NV centers in silicon carbide are promising platforms for large-scale integrated quantum photonics and long-distance quantum networks.

6.
Opt Express ; 26(1): 32-50, 2018 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-29328292

RESUMO

Contextuality, the impossibility of assigning context-independent measurement outcomes, is a critical resource for quantum computation and communication. No-signaling between successive measurements is an essential requirement that should be accomplished in any test of quantum contextuality and that is difficult to achieve in practice. Here, we introduce an optimal quantum state-independent contextuality inequality in which the deviation from the classical bound is maximal. We then experimentally test it using single photons generated from a defect in a bulk silicon carbide, while satisfying the requirement of no-signaling within the experimental error. Our results shed new light on the study of quantum contextuality under no-signaling conditions.

7.
Phys Rev Lett ; 121(6): 060506, 2018 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-30141679

RESUMO

It has been suggested that both quantum superpositions and nonlinear interactions are important resources for quantum metrology. However, to date the different roles that these two resources play in the precision enhancement are not well understood. Here, we experimentally demonstrate a Heisenberg-scaling metrology to measure the parameter governing the nonlinear coupling between two different optical modes. The intense mode with n (more than 10^{6} in our work) photons manifests its effect through the nonlinear interaction strength which is proportional to its average photon number. The superposition state of the weak mode, which contains only a single photon, is responsible for both the linear Hamiltonian and the scaling of the measurement precision. By properly preparing the initial state of single photon and making projective photon-counting measurements, the extracted classical Fisher information (FI) can saturate the quantum FI embedded in the combined state after coupling, which is ∼n^{2} and leads to a practical precision ≃1.2/n. Free from the utilization of entanglement, our work paves a way to realize Heisenberg-scaling precision when only a linear Hamiltonian is involved.

8.
Phys Rev Lett ; 117(17): 170403, 2016 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-27824461

RESUMO

The physical impact and the testability of the Kochen-Specker (KS) theorem is debated because of the fact that perfect compatibility in a single quantum system cannot be achieved in practical experiments with finite precision. Here, we follow the proposal of A. Cabello and M. T. Cunha [Phys. Rev. Lett. 106, 190401 (2011)], and present a compatibility-loophole-free experimental violation of an inequality of noncontextual theories by two spatially separated entangled qutrits. A maximally entangled qutrit-qutrit state with a fidelity as high as 0.975±0.001 is prepared and distributed to separated spaces, and these two photons are then measured locally, providing the compatibility requirement. The results show that the inequality for noncontextual theory is violated by 31 standard deviations. Our experiments pave the way to close the debate about the testability of the KS theorem. In addition, the method to generate high-fidelity and high-dimension entangled states will provide significant advantages in high-dimension quantum encoding and quantum communication.

9.
Phys Rev Lett ; 117(23): 230801, 2016 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-27982616

RESUMO

The weak-value-based metrology is very promising and has attracted a lot of attention in recent years because of its remarkable ability in signal amplification. However, it is suggested that the upper limit of the precision of this metrology cannot exceed that of classical metrology because of the low sample size caused by the probe loss during postselection. Nevertheless, a recent proposal shows that this probe loss can be reduced by the power-recycling technique, and thus enhance the precision of weak-value-based metrology. Here we experimentally realize the power-recycled interferometric weak-value-based beam-deflection measurement and obtain the amplitude of the detected signal and white noise by discrete Fourier transform. Our results show that the detected signal can be strengthened by power recycling, and the power-recycled weak-value-based signal-to-noise ratio can surpass the upper limit of the classical scheme, corresponding to the shot-noise limit. This work sheds light on higher precision metrology and explores the real advantage of the weak-value-based metrology over classical metrology.

10.
Phys Rev Lett ; 115(11): 113002, 2015 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-26406826

RESUMO

We discuss the use of inequalities of the Leggett-Garg type (LGtI) to witness quantum coherence and present the first experimental violation of this type of inequalities using a light-matter interfaced system. By separately benchmarking the Markovian character of the evolution and the translational invariance of the conditional probabilities, the observed violation of a LGtI is attributed to the quantum coherent character of the process. These results provide a general method to benchmark "quantumness" when the absence of memory effects can be independently certified and confirm the persistence of quantum coherent features within systems of increasing complexity.

11.
Phys Rev Lett ; 115(7): 070502, 2015 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-26317702

RESUMO

Here we present the quantum storage of three-dimensional orbital-angular-momentum photonic entanglement in a rare-earth-ion-doped crystal. The properties of the entanglement and the storage process are confirmed by the violation of the Bell-type inequality generalized to three dimensions after storage (S=2.152±0.033). The fidelity of the memory process is 0.993±0.002, as determined through complete quantum process tomography in three dimensions. An assessment of the visibility of the stored weak coherent pulses in higher-dimensional spaces demonstrates that the memory is highly reliable for 51 spatial modes. These results pave the way towards the construction of high-dimensional and multiplexed quantum repeaters based on solid-state devices. The multimode capacity of rare-earth-based optical processors goes beyond the temporal and the spectral degree of freedom, which might provide a useful tool for photonic information processing.

12.
Natl Sci Rev ; 11(11): nwae161, 2024 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-39440262

RESUMO

Photonic integrated quantum memories are essential for the construction of scalable quantum networks. Spin-wave quantum storage, which can support on-demand retrieval with a long lifetime, is indispensable for practical applications, but has never been demonstrated in an integrated solid-state device. Here, we demonstrate spin-wave quantum storage based on a laser-written waveguide fabricated in a 151Eu3+:Y2SiO5 crystal, using both the atomic frequency comb and noiseless photon-echo protocols. Qubits encoded with single-photon-level inputs are stored and retrieved with a fidelity of [Formula: see text], which is far beyond the maximal fidelity that can be obtained with any classical device. Our results underline the potential of laser-written integrated devices for practical applications in large-scale quantum networks, such as the construction of multiplexed quantum repeaters in an integrated configuration and high-density transportable quantum memories.

13.
Nat Commun ; 15(1): 8529, 2024 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-39358375

RESUMO

Quantum networks provide a prospective paradigm to connect separated quantum nodes, which relies on the distribution of long-distance entanglement and active feedforward control of qubits between remote nodes. Such approaches can be utilized to construct nonlocal quantum gates, forming building blocks for distributed quantum computing and other novel quantum applications. However, these gates have only been realized within single nodes or between nodes separated by a few tens of meters, limiting the ability to harness computing resources in large-scale quantum networks. Here, we demonstrate nonlocal photonic quantum gates between two nodes spatially separated by 7.0 km using stationary qubits based on multiplexed quantum memories, flying qubits at telecom wavelengths, and active feedforward control based on field-deployed fibers. Furthermore, we illustrate quantum parallelism by implementing the Deutsch-Jozsa algorithm and the quantum phase estimation algorithm between the two remote nodes. These results represent a proof-of-principle demonstration of quantum gates over metropolitan-scale distances and lay the foundation for the construction of large-scale distributed quantum networks relying on existing fiber channels.

14.
Light Sci Appl ; 13(1): 74, 2024 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-38485915

RESUMO

Photonic quantum computation plays an important role and offers unique advantages. Two decades after the milestone work of Knill-Laflamme-Milburn, various architectures of photonic processors have been proposed, and quantum advantage over classical computers has also been demonstrated. It is now the opportune time to apply this technology to real-world applications. However, at current technology level, this aim is restricted by either programmability in bulk optics or loss in integrated optics for the existing architectures of processors, for which the resource cost is also a problem. Here we present a von-Neumann-like architecture based on temporal-mode encoding and looped structure on table, which is capable of multimode-universal programmability, resource-efficiency, phase-stability and software-scalability. In order to illustrate these merits, we execute two different programs with varying resource requirements on the same processor, to investigate quantum signature of chaos from two aspects: the signature behaviors exhibited in phase space (13 modes), and the Fermi golden rule which has not been experimentally studied in quantitative way before (26 modes). The maximal program contains an optical interferometer network with 1694 freely-adjustable phases. Considering current state-of-the-art, our architecture stands as the most promising candidate for real-world applications.

15.
Phys Rev Lett ; 108(19): 190505, 2012 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-23003016

RESUMO

Faithfully storing an unknown quantum light state is essential to advanced quantum communication and distributed quantum computation applications. The required quantum memory must have high fidelity to improve the performance of a quantum network. Here we report the reversible transfer of photonic polarization states into collective atomic excitation in a compact solid-state device. The quantum memory is based on an atomic frequency comb (AFC) in rare-earth ion-doped crystals. We obtain up to 0.999 process fidelity for the storage and retrieval process of single-photon-level coherent pulse. This reliable quantum memory is a crucial step toward quantum networks based on solid-state devices.

16.
Nat Commun ; 13(1): 5713, 2022 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-36175507

RESUMO

Hexagonal boron nitride (hBN) has recently been demonstrated to contain optically polarized and detected electron spins that can be utilized for implementing qubits and quantum sensors in nanolayered-devices. Understanding the coherent dynamics of microwave driven spins in hBN is of crucial importance for advancing these emerging new technologies. Here, we demonstrate and study the Rabi oscillation and related phenomena of a negatively charged boron vacancy (V[Formula: see text]) spin ensemble in hBN. We report on different dynamics of the V[Formula: see text] spins at weak and strong magnetic fields. In the former case the defect behaves like a single electron spin system, while in the latter case it behaves like a multi-spin system exhibiting multiple-frequency dynamical oscillation as beat in the Ramsey fringes. We also carry out theoretical simulations for the spin dynamics of V[Formula: see text] and reveal that the nuclear spins can be driven via the strong electron nuclear coupling existing in V[Formula: see text] center, which can be modulated by the magnetic field and microwave field.

17.
Nat Commun ; 12(1): 2381, 2021 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-33888720

RESUMO

Photon loss in optical fibers prevents long-distance distribution of quantum information on the ground. Quantum repeater is proposed to overcome this problem, but the communication distance is still limited so far because of the system complexity of the quantum repeater scheme. Alternative solutions include transportable quantum memory and quantum-memory-equipped satellites, where long-lived optical quantum memories are the key components to realize global quantum communication. However, the longest storage time of the optical memories demonstrated so far is approximately 1 minute. Here, by employing a zero-first-order-Zeeman magnetic field and dynamical decoupling to protect the spin coherence in a solid, we demonstrate coherent storage of light in an atomic frequency comb memory over 1 hour, leading to a promising future for large-scale quantum communication based on long-lived solid-state quantum memories.

18.
Nat Commun ; 12(1): 4378, 2021 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-34282136

RESUMO

Photon echo is a fundamental tool for the manipulation of electromagnetic fields. Unavoidable spontaneous emission noise is generated in this process due to the strong rephasing pulse, which limits the achievable signal-to-noise ratio and represents a fundamental obstacle towards their applications in the quantum regime. Here we propose a noiseless photon-echo protocol based on a four-level atomic system. We implement this protocol in a Eu3+:Y2SiO5 crystal to serve as an optical quantum memory. A storage fidelity of 0.952 ± 0.018 is obtained for time-bin qubits encoded with single-photon-level coherent pulses, which is far beyond the maximal fidelity achievable using the classical measure-and-prepare strategy. In this work, the demonstrated noiseless photon-echo quantum memory features spin-wave storage, easy operation and high storage fidelity, which should be easily extended to other physical systems.

19.
Light Sci Appl ; 10(1): 103, 2021 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-34001846

RESUMO

In optical metrological protocols to measure physical quantities, it is, in principle, always beneficial to increase photon number n to improve measurement precision. However, practical constraints prevent the arbitrary increase of n due to the imperfections of a practical detector, especially when the detector response is dominated by the saturation effect. In this work, we show that a modified weak measurement protocol, namely, biased weak measurement significantly improves the precision of optical metrology in the presence of saturation effect. This method detects an ultra-small fraction of photons while maintains a considerable amount of metrological information. The biased pre-coupling leads to an additional reduction of photons in the post-selection and generates an extinction point in the spectrum distribution, which is extremely sensitive to the estimated parameter and difficult to be saturated. Therefore, the Fisher information can be persistently enhanced by increasing the photon number. In our magnetic-sensing experiment, biased weak measurement achieves precision approximately one order of magnitude better than those of previously used methods. The proposed method can be applied in various optical measurement schemes to remarkably mitigate the detector saturation effect with low-cost apparatuses.

20.
Sci Rep ; 10(1): 15089, 2020 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-32934301

RESUMO

Stable quantum memories that capable of storing quantum information for long time scales are an essential building block for an array of potential applications. The long memory time are usually achieved via dynamical decoupling technique involving decoupling of the memory states from its local environment. However, because this process is strongly limited by the errors in the pulses, an noise-protected scheme remains challenging in the field of quantum memories. Here we propose a scheme to design a noise-resisted [Formula: see text] pulse, which features high fidelity exceeding [Formula: see text] under realistic situations. Using this [Formula: see text] pulse we can generate different dynamical decoupling sequences that preserve high fidelity for long time scales. The versatility, robustness, and potential scalability of this method may allow for various applications in quantum memories technology.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA