Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 93
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Cereb Cortex ; 34(3)2024 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-38483143

RESUMO

Gyri and sulci are 2 fundamental cortical folding patterns of the human brain. Recent studies have suggested that gyri and sulci may play different functional roles given their structural and functional heterogeneity. However, our understanding of the functional differences between gyri and sulci remains limited due to several factors. Firstly, previous studies have typically focused on either the spatial or temporal domain, neglecting the inherently spatiotemporal nature of brain functions. Secondly, analyses have often been restricted to either local or global scales, leaving the question of hierarchical functional differences unresolved. Lastly, there has been a lack of appropriate analytical tools for interpreting the hierarchical spatiotemporal features that could provide insights into these differences. To overcome these limitations, in this paper, we proposed a novel hierarchical interpretable autoencoder (HIAE) to explore the hierarchical functional difference between gyri and sulci. Central to our approach is its capability to extract hierarchical features via a deep convolutional autoencoder and then to map these features into an embedding vector using a carefully designed feature interpreter. This process transforms the features into interpretable spatiotemporal patterns, which are pivotal in investigating the functional disparities between gyri and sulci. We evaluate the proposed framework on Human Connectome Project task functional magnetic resonance imaging dataset. The experiments demonstrate that the HIAE model can effectively extract and interpret hierarchical spatiotemporal features that are neuroscientifically meaningful. The analyses based on the interpreted features suggest that gyri are more globally activated, whereas sulci are more locally activated, demonstrating a distinct transition in activation patterns as the scale shifts from local to global. Overall, our study provides novel insights into the brain's anatomy-function relationship.


Assuntos
Córtex Cerebral , Conectoma , Humanos , Córtex Cerebral/diagnóstico por imagem , Córtex Cerebral/fisiologia , Imageamento por Ressonância Magnética/métodos , Encéfalo/diagnóstico por imagem , Encéfalo/fisiologia , Conectoma/métodos , Cabeça
2.
Pharmacol Res ; 199: 107038, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38072216

RESUMO

For decades, a variety of predictive approaches have been proposed and evaluated in terms of their prediction capability for Alzheimer's Disease (AD) and its precursor - mild cognitive impairment (MCI). Most of them focused on prediction or identification of statistical differences among different clinical groups or phases, especially in the context of binary or multi-class classification. The continuous nature of AD development and transition states between successive AD related stages have been typically overlooked. Though a few progression models of AD have been studied recently, they were mainly designed to determine and compare the order of specific biomarkers. How to effectively predict the individual patient's status within a wide spectrum of continuous AD progression has been largely understudied. In this work, we developed a novel learning-based embedding framework to encode the intrinsic relations among AD related clinical stages by a set of meaningful embedding vectors in the latent space (Disease2Vec). We named this process as disease embedding. By Disease2Vec, our framework generates a disease embedding tree (DETree) which effectively represents different clinical stages as a tree trajectory reflecting AD progression and thus can be used to predict clinical status by projecting individuals onto this continuous trajectory. Through this model, DETree can not only perform efficient and accurate prediction for patients at any stages of AD development (across five fine-grained clinical groups instead of typical two groups), but also provide richer status information by examining the projecting locations within a wide and continuous AD progression process. (Code will be available: https://github.com/qidianzl/Disease2Vec.).


Assuntos
Doença de Alzheimer , Disfunção Cognitiva , Humanos , Biomarcadores , Progressão da Doença
3.
Cereb Cortex ; 33(10): 5851-5862, 2023 05 09.
Artigo em Inglês | MEDLINE | ID: mdl-36487182

RESUMO

Current brain mapping methods highly depend on the regularity, or commonality, of anatomical structure, by forcing the same atlas to be matched to different brains. As a result, individualized structural information can be overlooked. Recently, we conceptualized a new type of cortical folding pattern called the 3-hinge gyrus (3HG), which is defined as the conjunction of gyri coming from three directions. Many studies have confirmed that 3HGs are not only widely existing on different brains, but also possess both common and individual patterns. In this work, we put further effort, based on the identified 3HGs, to establish the correspondences of individual 3HGs. We developed a learning-based embedding framework to encode individual cortical folding patterns into a group of anatomically meaningful embedding vectors (cortex2vector). Each 3HG can be represented as a combination of these embedding vectors via a set of individual specific combining coefficients. In this way, the regularity of folding pattern is encoded into the embedding vectors, while the individual variations are preserved by the multi-hop combination coefficients. Results show that the learned embeddings can simultaneously encode the commonality and individuality of cortical folding patterns, as well as robustly infer the complicated many-to-many anatomical correspondences among different brains.


Assuntos
Mapeamento Encefálico , Imageamento por Ressonância Magnética , Imageamento por Ressonância Magnética/métodos , Mapeamento Encefálico/métodos , Encéfalo , Aprendizagem , Córtex Cerebral
4.
Cereb Cortex ; 33(11): 6708-6722, 2023 05 24.
Artigo em Inglês | MEDLINE | ID: mdl-36646465

RESUMO

Cortical folding patterns are related to brain function, cognition, and behavior. Since the relationship has not been fully explained on a coarse scale, many efforts have been devoted to the identification of finer grained cortical landmarks, such as sulcal pits and gyral peaks, which were found to remain invariant across subjects and ages and the invariance may be related to gene mediated proto-map. However, gyral peaks were only investigated on macaque monkey brains, but not on human brains where the investigation is challenged due to high inter-individual variabilities. To this end, in this work, we successfully identified 96 gyral peaks both on the left and right hemispheres of human brains, respectively. These peaks are spatially consistent across individuals. Higher or sharper peaks are more consistent across subjects. Both structural and functional graph metrics of peaks are significantly different from other cortical regions, and more importantly, these nodal graph metrics are anti-correlated with the spatial consistency metrics within peaks. In addition, the distribution of peaks and various cortical anatomical, structural/functional connective features show hemispheric symmetry. These findings provide new clues to understanding the cortical landmarks, as well as their relationship with brain functions, cognition, behavior in both healthy and aberrant brains.


Assuntos
Encéfalo , Imageamento por Ressonância Magnética , Animais , Humanos , Membrana Celular , Córtex Cerebral , Macaca
5.
Cereb Cortex ; 33(15): 9354-9366, 2023 07 24.
Artigo em Inglês | MEDLINE | ID: mdl-37288479

RESUMO

The human brain development experiences a complex evolving cortical folding from a smooth surface to a convoluted ensemble of folds. Computational modeling of brain development has played an essential role in better understanding the process of cortical folding, but still leaves many questions to be answered. A major challenge faced by computational models is how to create massive brain developmental simulations with affordable computational sources to complement neuroimaging data and provide reliable predictions for brain folding. In this study, we leveraged the power of machine learning in data augmentation and prediction to develop a machine-learning-based finite element surrogate model to expedite brain computational simulations, predict brain folding morphology, and explore the underlying folding mechanism. To do so, massive finite element method (FEM) mechanical models were run to simulate brain development using the predefined brain patch growth models with adjustable surface curvature. Then, a GAN-based machine learning model was trained and validated with these produced computational data to predict brain folding morphology given a predefined initial configuration. The results indicate that the machine learning models can predict the complex morphology of folding patterns, including 3-hinge gyral folds. The close agreement between the folding patterns observed in FEM results and those predicted by machine learning models validate the feasibility of the proposed approach, offering a promising avenue to predict the brain development with given fetal brain configurations.


Assuntos
Algoritmos , Encéfalo , Humanos , Análise de Elementos Finitos , Encéfalo/diagnóstico por imagem , Simulação por Computador , Aprendizado de Máquina
6.
Neuroimage ; 280: 120344, 2023 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-37619794

RESUMO

Genetic mechanisms have been hypothesized to be a major determinant in the formation of cortical folding. Although there is an increasing number of studies examining the heritability of cortical folding, most of them focus on sulcal pits rather than gyral peaks. Gyral peaks, which reflect the highest local foci on gyri and are consistent across individuals, remain unstudied in terms of heritability. To address this knowledge gap, we used high-resolution data from the Human Connectome Project (HCP) to perform classical twin analysis and estimate the heritability of gyral peaks across various brain regions. Our results showed that the heritability of gyral peaks was heterogeneous across different cortical regions, but relatively symmetric between hemispheres. We also found that pits and peaks are different in a variety of anatomic and functional measures. Further, we explored the relationship between the levels of heritability and the formation of cortical folding by utilizing the evolutionary timeline of gyrification. Our findings indicate that the heritability estimates of both gyral peaks and sulcal pits decrease linearly with the evolution timeline of gyrification. This suggests that the cortical folds which formed earlier during gyrification are subject to stronger genetic influences than the later ones. Moreover, the pits and peaks coupled by their time of appearance are also positively correlated in respect of their heritability estimates. These results fill the knowledge gap regarding genetic influences on gyral peaks and significantly advance our understanding of how genetic factors shape the formation of cortical folding. The comparison between peaks and pits suggests that peaks are not a simple morphological mirror of pits but could help complete the understanding of folding patterns.


Assuntos
Conhecimento , Gêmeos , Humanos , Gêmeos/genética
7.
Zhong Nan Da Xue Xue Bao Yi Xue Ban ; 47(8): 981-993, 2022 Aug 28.
Artigo em Inglês, Zh | MEDLINE | ID: mdl-36097765

RESUMO

Recent advancement in natural language processing (NLP) and medical imaging empowers the wide applicability of deep learning models. These developments have increased not only data understanding, but also knowledge of state-of-the-art architectures and their real-world potentials. Medical imaging researchers have recognized the limitations of only targeting images, as well as the importance of integrating multimodal inputs into medical image analysis. The lack of comprehensive surveys of the current literature, however, impedes the progress of this domain. Existing research perspectives, as well as the architectures, tasks, datasets, and performance measures examined in the present literature, are reviewed in this work, and we also provide a brief description of possible future directions in the field, aiming to provide researchers and healthcare professionals with a detailed summary of existing academic research and to provide rational insights to facilitate future research.


Assuntos
Processamento de Linguagem Natural , Humanos , Inquéritos e Questionários
8.
Psychol Sci ; 32(8): 1183-1197, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34323639

RESUMO

On average, men and women differ in brain structure and behavior, raising the possibility of a link between sex differences in brain and behavior. But women and men are also subject to different societal and cultural norms. We navigated this challenge by investigating variability of sex-differentiated brain structure within each sex. Using data from the Queensland Twin IMaging study (n = 1,040) and Human Connectome Project (n = 1,113), we obtained data-driven measures of individual differences along a male-female dimension for brain and behavior based on average sex differences in brain structure and behavior, respectively. We found a weak association between these brain and behavioral differences, driven by brain size. These brain and behavioral differences were moderately heritable. Our findings suggest that behavioral sex differences are, to some extent, related to sex differences in brain structure but that this is mainly driven by differences in brain size, and causality should be interpreted cautiously.


Assuntos
Conectoma , Caracteres Sexuais , Encéfalo/diagnóstico por imagem , Feminino , Humanos , Imageamento por Ressonância Magnética , Masculino , Gêmeos
9.
Brain Topogr ; 28(5): 666-679, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25331991

RESUMO

Functional connectivity measured from resting state fMRI (R-fMRI) data has been widely used to examine the brain's functional activities and has been recently used to characterize and differentiate brain conditions. However, the dynamical transition patterns of the brain's functional states have been less explored. In this work, we propose a novel computational framework to quantitatively characterize the brain state dynamics via hidden Markov models (HMMs) learned from the observations of temporally dynamic functional connectomics, denoted as functional connectome states. The framework has been applied to the R-fMRI dataset including 44 post-traumatic stress disorder (PTSD) patients and 51 normal control (NC) subjects. Experimental results show that both PTSD and NC brains were undergoing remarkable changes in resting state and mainly transiting amongst a few brain states. Interestingly, further prediction with the best-matched HMM demonstrates that PTSD would enter into, but could not disengage from, a negative mood state. Importantly, 84% of PTSD patients and 86% of NC subjects are successfully classified via multiple HMMs using majority voting.


Assuntos
Encéfalo/fisiopatologia , Processamento de Imagem Assistida por Computador/métodos , Imageamento por Ressonância Magnética/métodos , Modelos Neurológicos , Transtornos de Estresse Pós-Traumáticos/fisiopatologia , Adulto , Estudos de Casos e Controles , Conectoma , Humanos , Cadeias de Markov , Vias Neurais/fisiopatologia
10.
Neuroimage ; 102 Pt 1: 184-91, 2014 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-24103849

RESUMO

The relationship between brain structure and function has been one of the centers of research in neuroimaging for decades. In recent years, diffusion tensor imaging (DTI) and functional magnetic resonance imaging (fMRI) techniques have been widely available and popular in cognitive and clinical neurosciences for examining the brain's white matter (WM) micro-structures and gray matter (GM) functions, respectively. Given the intrinsic integration of WM/GM and the complementary information embedded in DTI/fMRI data, it is natural and well-justified to combine these two neuroimaging modalities together to investigate brain structure and function and their relationships simultaneously. In the past decade, there have been remarkable achievements of DTI/fMRI fusion methods and applications in neuroimaging and human brain mapping community. This survey paper aims to review recent advancements on methodologies and applications in incorporating multimodal DTI and fMRI data, and offer our perspectives on future research directions. We envision that effective fusion of DTI/fMRI techniques will play increasingly important roles in neuroimaging and brain sciences in the years to come.


Assuntos
Encéfalo/anatomia & histologia , Encéfalo/fisiologia , Imagem de Tensor de Difusão , Imageamento por Ressonância Magnética , Imagem Multimodal , Humanos , Neuroimagem/métodos
11.
Hum Brain Mapp ; 35(4): 1761-78, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-23671011

RESUMO

Functional connectomes (FCs) have been recently shown to be powerful in characterizing brain conditions. However, many previous studies assumed temporal stationarity of FCs, while their temporal dynamics are rarely explored. Here, based on the structural connectomes constructed from diffusion tensor imaging data, FCs are derived from resting-state fMRI (R-fMRI) data and are then temporally divided into quasi-stable segments via a sliding time window approach. After integrating and pooling over a large number of those temporally quasi-stable FC segments from 44 post-traumatic stress disorder (PTSD) patients and 51 healthy controls, common FC (CFC) patterns are derived via effective dictionary learning and sparse coding algorithms. It is found that there are 16 CFC patterns that are reproducible across healthy controls, and interestingly, two additional CFC patterns with altered connectivity patterns [termed signature FC (SFC) here] exist dominantly in PTSD subjects. These two SFC patterns alone can successfully differentiate 80% of PTSD subjects from healthy controls with only 2% false positive. Furthermore, the temporal transition dynamics of CFC patterns in PTSD subjects are substantially different from those in healthy controls. These results have been replicated in separate testing datasets, suggesting that dynamic functional connectomics signatures can effectively characterize and differentiate PTSD patients.


Assuntos
Encéfalo/fisiopatologia , Conectoma/métodos , Imageamento por Ressonância Magnética/métodos , Transtornos de Estresse Pós-Traumáticos/diagnóstico , Transtornos de Estresse Pós-Traumáticos/fisiopatologia , Algoritmos , Inteligência Artificial , Reações Falso-Positivas , Humanos , Vias Neurais/fisiopatologia , Reprodutibilidade dos Testes , Descanso/fisiologia , Processamento de Sinais Assistido por Computador
12.
Hum Brain Mapp ; 35(10): 5262-78, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-24861961

RESUMO

Modeling abnormal temporal dynamics of functional interactions in psychiatric disorders has been of great interest in the neuroimaging field, and thus a variety of methods have been proposed so far. However, the temporal dynamics and disease-related abnormalities of functional interactions within specific data-driven discovered subnetworks have been rarely explored yet. In this work, we propose a novel computational framework composed of an effective Bayesian connectivity change point model for modeling functional brain interactions and their dynamics simultaneously and an effective variant of nonnegative matrix factorization for assessing the functional interaction abnormalities within subnetworks. This framework has been applied on the resting state fmagnetic resonance imaging (fMRI) datasets of 23 children with attention-deficit/hyperactivity disorder (ADHD) and 45 normal control (NC) children, and has revealed two atomic functional interaction patterns (AFIPs) discovered for ADHD and another two AFIPs derived for NC. Together, these four AFIPs could be grouped into two pairs, one common pair representing the common AFIPs in ADHD and NC, and the other abnormal pair representing the abnormal AFIPs in ADHD. Interestingly, by comparing the abnormal AFIP pair, two data-driven abnormal functional subnetworks are derived. Strikingly, by evaluating the approximation based on the four AFIPs, all of the ADHD children were successfully differentiated from NCs without any false positive.


Assuntos
Transtorno do Deficit de Atenção com Hiperatividade/patologia , Mapeamento Encefálico , Encéfalo/fisiopatologia , Dinâmica não Linear , Teorema de Bayes , Encéfalo/irrigação sanguínea , Simulação por Computador , Feminino , Humanos , Processamento de Imagem Assistida por Computador , Imageamento por Ressonância Magnética , Masculino , Oxigênio/sangue
13.
Hum Brain Mapp ; 35(7): 2911-23, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24123412

RESUMO

Mild cognitive impairment (MCI) has received increasing attention not only because of its potential as a precursor for Alzheimer's disease but also as a predictor of conversion to other neurodegenerative diseases. Although MCI has been defined clinically, accurate and efficient diagnosis is still challenging. Although neuroimaging techniques hold promise, compared to commonly used biomarkers including amyloid plaques, tau protein levels and brain tissue atrophy, neuroimaging biomarkers are less well validated. In this article, we propose a connectomes-scale assessment of structural and functional connectivity in MCI via two independent multimodal DTI/fMRI datasets. We first used DTI-derived structural profiles to explore and tailor the most common and consistent landmarks, then applied them in a whole-brain functional connectivity analysis. The next step fused the results from two independent datasets together and resulted in a set of functional connectomes with the most differentiation power, hence named as "connectome signatures." Our results indicate that these "connectome signatures" have significantly high MCI-vs-controls classification accuracy, at more than 95%. Interestingly, through functional meta-analysis, we found that the majority of "connectome signatures" are mainly derived from the interactions among different functional networks, for example, cognition-perception and cognition-action domains, rather than from within a single network. Our work provides support for using functional "connectome signatures" as neuroimaging biomarkers of MCI.


Assuntos
Encéfalo/irrigação sanguínea , Encéfalo/patologia , Disfunção Cognitiva/patologia , Conectoma , Vias Neurais/irrigação sanguínea , Vias Neurais/patologia , Idoso , Idoso de 80 Anos ou mais , Conjuntos de Dados como Assunto , Imagem de Difusão por Ressonância Magnética , Feminino , Humanos , Processamento de Imagem Assistida por Computador , Imageamento por Ressonância Magnética , Masculino , Pessoa de Meia-Idade , Oxigênio , Máquina de Vetores de Suporte
14.
Hum Brain Mapp ; 35(7): 3314-31, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24222313

RESUMO

Multivariate connectivity and functional dynamics have been of wide interest in the neuroimaging field, and a variety of methods have been developed to study functional interactions and dynamics. In contrast, the temporal dynamic transitions of multivariate functional interactions among brain networks, in particular, in resting state, have been much less explored. This article presents a novel dynamic Bayesian variable partition model (DBVPM) that simultaneously considers and models multivariate functional interactions and their dynamics via a unified Bayesian framework. The basic idea is to detect the temporal boundaries of piecewise quasi-stable functional interaction patterns, which are then modeled by representative signature patterns and whose temporal transitions are characterized by finite-state transition machines. Results on both simulated and experimental datasets demonstrated the effectiveness and accuracy of the DBVPM in dividing temporally transiting functional interaction patterns. The application of DBVPM on a post-traumatic stress disorder (PTSD) dataset revealed substantially different multivariate functional interaction signatures and temporal transitions in the default mode and emotion networks of PTSD patients, in comparison with those in healthy controls. This result demonstrated the utility of DBVPM in elucidating salient features that cannot be revealed by static pair-wise functional connectivity analysis.


Assuntos
Teorema de Bayes , Mapeamento Encefálico , Encéfalo/fisiologia , Modelos Neurológicos , Dinâmica não Linear , Simulação por Computador , Humanos , Vias Neurais/fisiologia
15.
Brain Topogr ; 27(6): 747-65, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-24903106

RESUMO

An important application of resting state fMRI data has been to identify resting state networks (RSN). The conventional RSN studies attempted to discover consistent networks through functional connectivity analysis over the whole scan time, which implicitly assumes that RSNs are static. However, the brain undergoes dynamic functional state changes and the functional connectome patterns vary along with time, even in resting state. Hence, this study aims to characterize temporal brain dynamics in resting state. It utilizes the temporally dynamic functional connectome patterns to extract a set of resting state clusters and their corresponding RSNs based on the large-scale consistent, reproducible and predictable whole-brain reference system of dense individualized and common connectivity-based cortical landmarks (DICCCOL). Especially, an effective multi-view spectral clustering method was performed by treating each dynamic functional connectome pattern as one view, and this procedure was also applied on static multi-subject functional connectomes to obtain the static clusters for comparison. It turns out that some dynamic clusters exhibit high similarity with static clusters, suggesting the stability of those RSNs including the visual network and the default mode network. Moreover, two motor-related dynamic clusters show correspondence with one static cluster, which implies substantially more temporal variability of the motor resting network. Particularly, four dynamic clusters exhibited large differences in comparison with their corresponding static networks. Thus it is suggested that these four networks might play critically important roles in functional brain dynamics and interactions during resting state, offering novel insights into the brain function and its dynamics.


Assuntos
Encéfalo/fisiologia , Conectoma , Rede Nervosa/fisiologia , Adolescente , Criança , Interpretação Estatística de Dados , Humanos , Processamento de Imagem Assistida por Computador , Imageamento por Ressonância Magnética , Modelos Neurológicos , Descanso/fisiologia
16.
Cereb Cortex ; 23(4): 786-800, 2013 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-22490548

RESUMO

Is there a common structural and functional cortical architecture that can be quantitatively encoded and precisely reproduced across individuals and populations? This question is still largely unanswered due to the vast complexity, variability, and nonlinearity of the cerebral cortex. Here, we hypothesize that the common cortical architecture can be effectively represented by group-wise consistent structural fiber connections and take a novel data-driven approach to explore the cortical architecture. We report a dense and consistent map of 358 cortical landmarks, named Dense Individualized and Common Connectivity-based Cortical Landmarks (DICCCOLs). Each DICCCOL is defined by group-wise consistent white-matter fiber connection patterns derived from diffusion tensor imaging (DTI) data. Our results have shown that these 358 landmarks are remarkably reproducible over more than one hundred human brains and possess accurate intrinsically established structural and functional cross-subject correspondences validated by large-scale functional magnetic resonance imaging data. In particular, these 358 cortical landmarks can be accurately and efficiently predicted in a new single brain with DTI data. Thus, this set of 358 DICCCOL landmarks comprehensively encodes the common structural and functional cortical architectures, providing opportunities for many applications in brain science including mapping human brain connectomes, as demonstrated in this work.


Assuntos
Mapeamento Encefálico , Córtex Cerebral/fisiologia , Fibras Nervosas Mielinizadas/fisiologia , Vias Neurais/fisiologia , Adolescente , Adulto , Fatores Etários , Idoso , Algoritmos , Atenção/fisiologia , Córtex Cerebral/anatomia & histologia , Córtex Cerebral/irrigação sanguínea , Imagem de Difusão por Ressonância Magnética , Emoções/fisiologia , Feminino , Humanos , Processamento de Imagem Assistida por Computador , Imageamento por Ressonância Magnética , Masculino , Semântica
17.
Psychoradiology ; 4: kkad033, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38333558

RESUMO

Dementia is an escalating global health challenge, with Alzheimer's disease (AD) at its forefront. Substantial evidence highlights the accumulation of AD-related pathological proteins in specific brain regions and their subsequent dissemination throughout the broader area along the brain network, leading to disruptions in both individual brain regions and their interconnections. Although a comprehensive understanding of the neurodegeneration-brain network link is lacking, it is undeniable that brain networks play a pivotal role in the development and progression of AD. To thoroughly elucidate the intricate network of elements and connections constituting the human brain, the concept of the brain connectome was introduced. Research based on the connectome holds immense potential for revealing the mechanisms underlying disease development, and it has become a prominent topic that has attracted the attention of numerous researchers. In this review, we aim to systematically summarize studies on brain networks within the context of AD, critically analyze the strengths and weaknesses of existing methodologies, and offer novel perspectives and insights, intending to serve as inspiration for future research.

18.
Artigo em Inglês | MEDLINE | ID: mdl-38163310

RESUMO

Vision transformer (ViT) and its variants have achieved remarkable success in various tasks. The key characteristic of these ViT models is to adopt different aggregation strategies of spatial patch information within the artificial neural networks (ANNs). However, there is still a key lack of unified representation of different ViT architectures for systematic understanding and assessment of model representation performance. Moreover, how those well-performing ViT ANNs are similar to real biological neural networks (BNNs) is largely unexplored. To answer these fundamental questions, we, for the first time, propose a unified and biologically plausible relational graph representation of ViT models. Specifically, the proposed relational graph representation consists of two key subgraphs: an aggregation graph and an affine graph. The former considers ViT tokens as nodes and describes their spatial interaction, while the latter regards network channels as nodes and reflects the information communication between channels. Using this unified relational graph representation, we found that: 1) model performance was closely related to graph measures; 2) the proposed relational graph representation of ViT has high similarity with real BNNs; and 3) there was a further improvement in model performance when training with a superior model to constrain the aggregation graph.

19.
Front Biosci (Landmark Ed) ; 29(1): 6, 2024 01 12.
Artigo em Inglês | MEDLINE | ID: mdl-38287795

RESUMO

BACKGROUND: Ferroptosis, a distinct iron-dependent form of regulated cell death, is induced by severe lipid peroxidation due to reactive oxygen species (ROS) generation. Breast cancer patient survival is correlated with the tumor-suppressing properties of Rho guanosine triphosphatase hydrolase enzyme (GTPase)-activating protein 6 (ARHGAP6). This study investigates the impact and mechanisms of ARHGAP6 on ferroptosis in breast cancer. METHODS: Using quantitative RT-PCR, Western blotting, and immunofluorescence staining, ARHGAP6 expression was detected in a gene expression dataset, cancer tissue samples, and cells. ARHGAP6 was overexpressed or silenced in breast cancer cell lines. Cell proliferation was measured using 5-ethynyl-2-deoxyuridine (EdU) assay, and cell death rate was determined using LDH cytotoxicity assay. As indicators of ferroptosis, Fe2+ ion content, lipid ROS, glutathione peroxidase 4 (GPX4), ChaC glutathione specific gamma-glutamylcyclotransferase 1 (CHAC1), prostaglandin-endoperoxide synthase 2 (PTGS2), solute carrier family 7 member 11 (SLC7A11), and acyl-CoA synthetase long chain family member 4 (ACSL4) levels were evaluated. RESULTS: ARHGAP6 was obviously downregulated in cancer tissues and cells. ARHGAP6 overexpression decreased cell proliferation, elevated cell death and lipid ROS, decreased GPX4 and SLC7A11, increased PTGS2, ACSL4, and CHAC1, and inhibited RhoA/ROCK1 and p38 MAPK signaling in cancer cells. ARHGAP6 knockdown exerted opposite effects to those of ARHGAP6 overexpression. p38 signaling suppression reversed the effect of ARHGAP6 knockdown on ferroptosis, while RhoA/ROCK1 signaling inhibition compromised the effect of ARHGAP6 on p38 MAPK signaling. In mice models, ARHGAP6 together with the ferroptosis inducer RSL3 cooperatively enhanced ferroptosis and inhibited tumor growth of cancer cells. ARHGAP6 mRNA level was positively correlated with that of ferroptosis indicators in tumor tissues. CONCLUSIONS: This study revealed that ARHGAP6 inhibited tumor growth of breast cancer by inducing ferroptosis via RhoA/ROCK1/p38 MAPK signaling. Integrating ARHGAP6 with ferroptosis-inducing agents may be a promising therapeutic strategy for breast cancer treatment.


Assuntos
Neoplasias da Mama , Ferroptose , Proteínas Ativadoras de GTPase , Animais , Feminino , Humanos , Camundongos , Neoplasias da Mama/genética , Ciclo-Oxigenase 2 , Ferroptose/genética , Proteínas Ativadoras de GTPase/genética , Lipídeos , Proteínas Quinases p38 Ativadas por Mitógeno/genética , Espécies Reativas de Oxigênio , Quinases Associadas a rho/genética
20.
PNAS Nexus ; 3(1): pgad422, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38169910

RESUMO

Convergent cross-mapping (CCM) has attracted increased attention recently due to its capability to detect causality in nonseparable systems under deterministic settings, which may not be covered by the traditional Granger causality. From an information-theoretic perspective, causality is often characterized as the directed information (DI) flowing from one side to the other. As information is essentially nondeterministic, a natural question is: does CCM measure DI flow? Here, we first causalize CCM so that it aligns with the presumption in causality analysis-the future values of one process cannot influence the past of the other, and then establish and validate the approximate equivalence of causalized CCM (cCCM) and DI under Gaussian variables through both theoretical derivations and fMRI-based brain network causality analysis. Our simulation result indicates that, in general, cCCM tends to be more robust than DI in causality detection. The underlying argument is that DI relies heavily on probability estimation, which is sensitive to data size as well as digitization procedures; cCCM, on the other hand, gets around this problem through geometric cross-mapping between the manifolds involved. Overall, our analysis demonstrates that cross-mapping provides an alternative way to evaluate DI and is potentially an effective technique for identifying both linear and nonlinear causal coupling in brain neural networks and other settings, either random or deterministic, or both.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA