Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
Mol Cell ; 82(1): 123-139.e7, 2022 01 06.
Artigo em Inglês | MEDLINE | ID: mdl-34910943

RESUMO

Mediator kinases (CDK8/19) are transcriptional regulators broadly implicated in cancer. Despite their central role in fine-tuning gene-expression programs, we find complete loss of CDK8/19 is tolerated in colorectal cancer (CRC) cells. Using orthogonal functional genomic and pharmacological screens, we identify BET protein inhibition as a distinct vulnerability in CDK8/19-depleted cells. Combined CDK8/19 and BET inhibition led to synergistic growth retardation in human and mouse models of CRC. Strikingly, depletion of CDK8/19 in these cells led to global repression of RNA polymerase II (Pol II) promoter occupancy and transcription. Concurrently, loss of Mediator kinase led to a profound increase in MED12 and BRD4 co-occupancy at enhancer elements and increased dependence on BET proteins for the transcriptional output of cell-essential genes. In total, this work demonstrates a synthetic lethal interaction between Mediator kinase and BET proteins and exposes a therapeutic vulnerability that can be targeted using combination therapies.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Proliferação de Células , Neoplasias Colorretais/enzimologia , Quinase 8 Dependente de Ciclina/metabolismo , Quinases Ciclina-Dependentes/metabolismo , Complexo Mediador/metabolismo , Proteínas Nucleares/metabolismo , Fatores de Transcrição/metabolismo , Adulto , Idoso , Idoso de 80 Anos ou mais , Animais , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Sítios de Ligação , Proteínas de Ciclo Celular/antagonistas & inibidores , Proteínas de Ciclo Celular/genética , Proliferação de Células/efeitos dos fármacos , Neoplasias Colorretais/tratamento farmacológico , Neoplasias Colorretais/genética , Quinase 8 Dependente de Ciclina/genética , Quinases Ciclina-Dependentes/genética , Elementos Facilitadores Genéticos , Feminino , Regulação Neoplásica da Expressão Gênica , Células HCT116 , Humanos , Masculino , Complexo Mediador/antagonistas & inibidores , Complexo Mediador/genética , Camundongos Endogâmicos BALB C , Camundongos Knockout , Camundongos Nus , Proteínas do Tecido Nervoso/antagonistas & inibidores , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Proteínas Nucleares/antagonistas & inibidores , Proteínas Nucleares/genética , Inibidores de Proteínas Quinases/farmacologia , Receptores de Superfície Celular/antagonistas & inibidores , Receptores de Superfície Celular/genética , Receptores de Superfície Celular/metabolismo , Transdução de Sinais , Fatores de Transcrição/antagonistas & inibidores , Fatores de Transcrição/genética , Transcrição Gênica , Carga Tumoral , Ensaios Antitumorais Modelo de Xenoenxerto
2.
Br J Cancer ; 122(5): 705-714, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31919406

RESUMO

BACKGROUND: Chemoresistance remains a critical event that accounts for colorectal cancer (CRC) lethality. The aim of this study is to explore the ability of dichloroacetate (DCA) to increase chemosensitivity in CRC and the molecular mechanisms involved. METHODS: The effects of combination treatment of DCA and oxaliplatin (L-OHP) were analysed both in vitro and in vivo. The DCA-responsive proteins in AMPK pathway were enriched using proteomic profiling technology. The effect of DCA on CAB39-AMPK signal pathway was analysed. In addition, miRNA expression profiles after DCA treatment were determined. The DCA-responsive miRNAs that target CAB39 were assayed. Alterations of CAB39 and miR-107 expression were performed both in vitro and on xenograft models to identify miR-107 that targets CAB39-AMPK-mTOR signalling pathway. RESULTS: DCA increased L-OHP chemosensitivity both in vivo and in vitro. DCA could upregulate CAB39 expression, which activates the AMPK/mTOR signalling pathway. CAB39 was confirmed to be a direct target of miR-107 regulated by DCA. Alterations of miR-107 expression were correlated with chemoresistance development in CRC both in vitro and in vivo. CONCLUSION: These findings suggest that the miR-107 induces chemoresistance through CAB39-AMPK-mTOR pathway in CRC cells, thus providing a promising target for overcoming chemoresistance in CRC.


Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Proteínas de Ligação ao Cálcio/metabolismo , Neoplasias Colorretais/tratamento farmacológico , Neoplasias Colorretais/metabolismo , MicroRNAs/metabolismo , Quinases Proteína-Quinases Ativadas por AMP , Animais , Neoplasias Colorretais/genética , Ácido Dicloroacético/administração & dosagem , Ácido Dicloroacético/farmacologia , Resistencia a Medicamentos Antineoplásicos , Sinergismo Farmacológico , Células HCT116 , Células HEK293 , Xenoenxertos , Humanos , Masculino , Camundongos , Camundongos Nus , MicroRNAs/antagonistas & inibidores , MicroRNAs/biossíntese , MicroRNAs/genética , Terapia de Alvo Molecular , Oxaliplatina/administração & dosagem , Oxaliplatina/farmacologia , Fosforilação/efeitos dos fármacos , Proteínas Quinases/metabolismo , Distribuição Aleatória , Transdução de Sinais/efeitos dos fármacos , Serina-Treonina Quinases TOR/antagonistas & inibidores , Serina-Treonina Quinases TOR/metabolismo , Regulação para Cima
3.
Br J Cancer ; 118(1): 79-87, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-29065111

RESUMO

BACKGROUND: New molecular probes are essential for early colon cancer diagnosis. A phage-display screening was performed to select novel binding peptides for early colon cancer imaging detection. METHODS: A human colon cancer cell line (COLO320HSR) and a normal human intestinal epithelial cell line (NCM460) were used for subtractive screening with a phage peptide library. The positive peptides were identified, and their binding capacities were confirmed by confocal immunofluorescence both in human colon cancer cells and in biopsy specimens. The sequences were further analysed for homology and the existing mimotopes by the BLAST algorithm and the MimoDB database. RESULTS: A peptide termed as CBP-DWS, which was demonstrated to be capable of binding to a panel of human colon cancer cell lines and tissues, was identified; it had virtually no binding to normal human intestinal epithelial cell line NCM460 and normal surrounding colon tissues. Bioinformatics analyses suggest that CBP-DWS targets human Glypican-3, which may be involved in important cellular functions in multiple cancer types. CONCLUSIONS: These studies suggest that the selected peptide CBP-DWS may be a candidate to serve as a novel probe for colon cancer imaging.


Assuntos
Neoplasias do Colo/diagnóstico , Biologia Computacional/métodos , Glipicanas/metabolismo , Peptídeos/análise , Algoritmos , Linhagem Celular Tumoral , Neoplasias do Colo/metabolismo , Células HCT116 , Células HT29 , Humanos , Microscopia Confocal , Microscopia de Fluorescência , Imagem Molecular , Biblioteca de Peptídeos , Peptídeos/química , Peptídeos/metabolismo , Ligação Proteica , Homologia de Sequência do Ácido Nucleico
4.
J Clin Invest ; 132(20)2022 10 17.
Artigo em Inglês | MEDLINE | ID: mdl-36006697

RESUMO

Initiation and maintenance of transcriptional states are critical for controlling normal tissue homeostasis and differentiation. The cyclin dependent kinases CDK8 and CDK19 (Mediator kinases) are regulatory components of Mediator, a highly conserved complex that orchestrates enhancer-mediated transcriptional output. While Mediator kinases have been implicated in the transcription of genes necessary for development and growth, its function in mammals has not been well defined. Using genetically defined models and pharmacological inhibitors, we showed that CDK8 and CDK19 function in a redundant manner to regulate intestinal lineage specification in humans and mice. The Mediator kinase module bound and phosphorylated key components of the chromatin remodeling complex switch/sucrose non-fermentable (SWI/SNF) in intestinal epithelial cells. Concomitantly, SWI/SNF and MED12-Mediator colocalized at distinct lineage-specifying enhancers in a CDK8/19-dependent manner. Thus, these studies reveal a transcriptional mechanism of intestinal cell specification, coordinated by the interaction between the chromatin remodeling complex SWI/SNF and Mediator kinase.


Assuntos
Montagem e Desmontagem da Cromatina , Sacarose , Animais , Cromatina/genética , Quinase 8 Dependente de Ciclina/genética , Quinase 8 Dependente de Ciclina/metabolismo , Quinases Ciclina-Dependentes/genética , Quinases Ciclina-Dependentes/metabolismo , Ciclinas/genética , Ciclinas/metabolismo , Homeostase , Humanos , Mamíferos/genética , Mamíferos/metabolismo , Camundongos , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
5.
Sci Adv ; 7(21)2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-34138730

RESUMO

Aberrant activation of Wnt/ß-catenin pathway is a key driver of colorectal cancer (CRC) growth and of great therapeutic importance. In this study, we performed comprehensive CRISPR screens to interrogate the regulatory network of Wnt/ß-catenin signaling in CRC cells. We found marked discrepancies between the artificial TOP reporter activity and ß-catenin-mediated endogenous transcription and redundant roles of T cell factor/lymphoid enhancer factor transcription factors in transducing ß-catenin signaling. Compiled functional genomic screens and network analysis revealed unique epigenetic regulators of ß-catenin transcriptional output, including the histone lysine methyltransferase 2A oncoprotein (KMT2A/Mll1). Using an integrative epigenomic and transcriptional profiling approach, we show that KMT2A loss diminishes the binding of ß-catenin to consensus DNA motifs and the transcription of ß-catenin targets in CRC. These results suggest that KMT2A may be a promising target for CRCs and highlight the broader potential for exploiting epigenetic modulation as a therapeutic strategy for ß-catenin-driven malignancies.


Assuntos
Neoplasias Colorretais , beta Catenina , Sistemas CRISPR-Cas , Linhagem Celular Tumoral , Proliferação de Células , Neoplasias Colorretais/patologia , Regulação Neoplásica da Expressão Gênica , Humanos , Fatores de Transcrição TCF/metabolismo , Via de Sinalização Wnt/genética , beta Catenina/genética , beta Catenina/metabolismo
6.
Oncogene ; 39(2): 469-485, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31597953

RESUMO

The development of chemoresistance remains a major challenge that accounts for colorectal cancer (CRC) lethality. Dichloroacetate (DCA) was originally used as a metabolic regulator in the treatment of metabolic diseases; here, DCA was assayed to identify the mechanisms underlying the chemoresistance of CRC. We found that DCA markedly enhanced chemosensitivity of CRC cells to fluorouracil (5-FU), and reduced the colony formation due to high levels of apoptosis. Using the microarray assay, we noted that miR-149-3p was involved in the chemoresistance of CRC, which was modulated by wild-type p53 after DCA treatment. In addition, PDK2 was identified as a direct target of miR-149-3p. Mechanistic analyses showed that overexpression of miR-149-3p enhanced 5-FU-induced apoptosis and reduced glucose metabolism, similar to the effects of PDK2 knockdown. In addition, overexpression of PDK2 partially reversed the inhibitory effect of miR-149-3p on glucose metabolism. Finally, both DCA treatment and miR-149-3p overexpression in 5-FU-resistant CRC cells were found to markedly sensitize the chemotherapeutic effect of 5-FU in vivo, and this effect was also validated in a small retrospective cohort of CRC patients. Taken together, we determined that the p53/miR-149-3p/PDK2 signaling pathway can potentially be targeted with DCA treatment to overcome chemoresistant CRC.


Assuntos
Neoplasias Colorretais/metabolismo , Neoplasias Colorretais/patologia , Ácido Dicloroacético/farmacologia , Glucose/metabolismo , MicroRNAs/genética , Piruvato Desidrogenase Quinase de Transferência de Acetil/metabolismo , Proteína Supressora de Tumor p53/metabolismo , Animais , Apoptose/efeitos dos fármacos , Sequência de Bases , Neoplasias Colorretais/tratamento farmacológico , Neoplasias Colorretais/genética , Ácido Dicloroacético/uso terapêutico , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Fluoruracila/farmacologia , Células HCT116 , Humanos , Masculino , Camundongos
7.
J Cancer ; 10(24): 6037-6047, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31762813

RESUMO

Chemoresistance is responsible for most colorectal cancer (CRC) related deaths. In this study, we found that dichloroacetate (DCA), a pyruvate dehydrogenase kinase (PDK) inhibitor, can be used as a sensitizer for oxaliplatin (L-OHP) chemoresistant CRC cells. The aim of this study was to explore the ability of DCA to overcome L-OHP resistance in CRC cells and to identify the underlying molecular mechanisms. We found that DCA sensitizes chemoresistant CRC cells to L-OHP-induced cytotoxic effects by inhibiting clone formation capacity and promoting cell apoptosis. A microRNA (miRNA) array was used for screen, and miR-543 was identified and shown to be downregulated after DCA treatment. The expression of miR-543 was higher in chemoresistant CRC cells than in chemosensitive CRC cells. Overexpression of miR-543 increased chemoresistance in CRC cells. The validated target gene, PTEN, was negatively regulated by miR-543 both in vitro and in vivo, and PTEN was upregulated by DCA through miR-543. In addition, overexpression of miR-543 reversed the inhibition of colony formation after DCA treatment. Furthermore, the Akt/mTOR pathway is activated by miR-543 and is involved in the miR-543 induced chemoresistance. There was a significant inverse relationship between miR-543 expression and PTEN level in CRC patients, and high miR-543 expression was associated with worse prognosis. In conclusion, DCA restored chemosensitivity through miR-543/PTEN/Akt/mTOR pathway, and miR-543 may be a potential marker or therapeutic target for chemoresistance in CRC.

8.
Oncol Lett ; 15(1): 1343-1349, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-29391905

RESUMO

Tribbles homolog 3 (TRB3), a type of pseudokinase that contains a consensus serine/threonine kinase catalytic core structure, is upregulated in hepatocellular carcinoma. However, the effect of TRB3 expression in hepatocellular carcinoma and the molecular mechanisms underlying TRB3-mediated effects on tumorigenesis in hepatocellular carcinoma have not been fully elucidated. The present study focused on the effect of TRB3 expression in MHCC97H hepatocellular carcinoma cells and investigated the underlying molecular mechanisms in MHCC97H cells. In the present study, it was revealed that TRB3 was significantly overexpressed in the MHCC97H hepatocellular carcinoma cell compared with L-02 normal hepatic cells. Under endoplasmic reticulum (ER) stress induced by thapsigargin and tunicamycin, the levels of TRB3, CCAAT/enhancer binding protein homologous protein (CHOP), protein kinase B (AKT) and phosphorylated (p)AKT expression were upregulated. Furthermore, when the expression of TRB3 was silenced by short hairpin (sh)RNA, the survival of MHCC97H hepatocellular carcinoma cells was increased. Notably, following transduction with lentiviral containing TRB3-shRNA, cell survival also increased after treatment with chemotherapy drug cisplatin. The present study demonstrated that knockdown of CHOP by shRNA was able to reduce TRB3 expression, and the knockdown of TRB3 markedly increased the level of pAKT. TRB3 was overexpressed in MHCC97H hepatocellular carcinoma cells, particularly under endoplasmic reticulum stress. Knockdown of TRB3 was able to increase cell survival. Therefore, TRB3 expression may induce apoptosis and reverse resistance to chemotherapy in MHCC97H hepatic carcinoma cells. The present study suggests that TRB3 is a key molecule that mediates the crosstalk between ER stress and AKT signal pathways. Furthermore, the present study may provide further insight into the cancer biology of hepatocellular carcinoma and the development of anticancer drugs targeting the ER stress and AKT signaling pathways.

9.
Sci Rep ; 6: 37478, 2016 11 22.
Artigo em Inglês | MEDLINE | ID: mdl-27874079

RESUMO

Protein lysine acetylation and succinylation play important regulatory roles in cells, both of which or each other has a close relationship. Dichloroacetate (DCA), a well-known pyruvate dehydrogenase kinase (PDK) inhibitor, has the potential to be used as anti-cancer drugs for several tumors including colorectal cancer. However, little is known about the potential mechanism of DCA-based cancer therapy by protein posttranslational modifications (PTM) including global proteome, acetylome and succinylome. Here the combinations with stable isotope labeling (SILAC), antibody affinity enrichment and high resolution LC-MS/MS analysis were performed in human colon cancer HCT116 cells. The quantifiable proteome was annotated using bioinformatics. In total, 4,518 proteins, 1,436 acetylation sites, and 671 succinylation sites were quantified, respectively to DCA treatment. Among the quantified acetylated sites, 158 were with increased level (quantification ratio >1.5) and 145 with decreased level (quantification ratio <0.67). Meanwhile, 179 up-regulated and 114 down-regulated succinylated sites were identified. The bioinformatics analyses initially showed acetylation and succinylation were involved in a wide range of cellular functions upon DCA-based anti-cancer effects. Notably, protein-protein interaction network analyses demonstrated widespread interactions modulated by protein acetylation and succinylation. Taken together, this study may shed a light on understanding the mechanism of DCA-based cancer treatment.


Assuntos
Neoplasias do Colo/metabolismo , Ácido Dicloroacético/farmacologia , Proteoma/metabolismo , Succinatos/metabolismo , Acetilação/efeitos dos fármacos , Sequência de Aminoácidos , Ciclo do Ácido Cítrico/efeitos dos fármacos , Análise por Conglomerados , Células HCT116 , Humanos , Lisina/metabolismo , Proteínas de Neoplasias/química , Proteínas de Neoplasias/metabolismo , Processamento de Proteína Pós-Traducional , Espectrometria de Massas em Tandem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA