Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 47
Filtrar
1.
Nano Lett ; 23(12): 5555-5561, 2023 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-37315026

RESUMO

Ion adsorption within nanopores is involved in numerous applications. However, a comprehensive understanding of the fundamental relationship between in-pore ion concentration and pore size, particularly in the sub-2 nm range, is scarce. This study investigates the ion-species-dependent concentration in multilayered graphene membranes (MGMs) with tunable nanoslit sizes (0.5-1.6 nm) using nuclear magnetic resonance and computational simulations. For Na+-based electrolytes in MGMs, the concentration of anions in graphene nanoslits increases in correlation with their chaotropic properties. As the nanoslit size decreases, the concentration of chaotropic ion (BF4-) increases, whereas the concentration of kosmotropic ions (Cit3-, PO43-) and other ions (Ac-, F-) decreases or changes slightly. Notably, anions remain more concentrated than counter Na+ ions, leading to electroneutrality breakdown and unipolar anion packing in MGMs. A continuum modeling approach, integrating molecular dynamic simulation with the Poisson-Boltzmann model, elucidates these observations by considering water-mediated ion-graphene non-electrostatic interactions and charge screening from graphene walls.

2.
Zhongguo Dang Dai Er Ke Za Zhi ; 25(4): 357-361, 2023 Apr 15.
Artigo em Zh | MEDLINE | ID: mdl-37073839

RESUMO

OBJECTIVES: To study the changes in cell free-DNA (cf-DNA), a marker of neutrophil extracellular traps (NETs), in neonates with acute respiratory distress syndrome (ARDS), and to evaluate its relationship with the severity and early diagnosis of ARDS. METHODS: The neonates diagnosed with ARDS in the Affiliated Hospital of Jiangsu University from January 2021 to June 2022 were enrolled in the prospective study. The neonates were divided into mild, moderate, and severe ARDS groups based on the oxygen index (OI) (4≤OI<8, 8≤OI<16, and OI≥16, respectively). The control group was selected from jaundice neonates who were observed in the neonatal department of the hospital during the same period, and they had no pathological factors causing neonatal jaundice. Peripheral blood samples were collected on day 1, day 3, and day 7 after admission for the ARDS group, and on the day of admission for the control group. Serum cf-DNA levels were measured using a fluorescence enzyme-linked immunosorbent assay. Serum interleukin-6 (IL-6) and tumor necrosis factor-α (TNF-α) levels were measured using enzyme-linked immunosorbent assay. A Pearson correlation analysis was used to evaluate the correlation of serum cf-DNA levels with serum IL-6 and TNF-α levels. RESULTS: A total of 50 neonates were enrolled in the ARDS group, including 15 neonates with mild ARDS, 25 with moderate ARDS, and 10 with severe ARDS. Twenty-five neonates were enrolled in the control group. Compared with the control group, the serum levels of cf-DNA, IL-6, and TNF-α in all ARDS groups were significantly increased (P<0.05). Compared with the mild ARDS group, the serum levels of cf-DNA, IL-6, and TNF-α in the moderate and severe ARDS groups were significantly increased (P<0.05), and the increase was more significant in the severe ARDS group (P<0.05). The serum levels of cf-DNA, IL-6, and TNF-α in all ARDS groups were significantly increased on day 3 after admission and significantly decreased on day 7 after admission compared with those on day 1 after admission (P<0.05). The Pearson correlation analysis showed that there was a positive correlation between serum cf-DNA levels and IL-6 levels as well as TNF-α levels in 50 neonates with ARDS (P<0.05). CONCLUSIONS: There is an excessive expression of NETs in neonates with ARDS, and dynamic monitoring of serum cf-DNA levels has certain clinical value in evaluating the severity and early diagnosis of ARDS in neonates.


Assuntos
Armadilhas Extracelulares , Síndrome do Desconforto Respiratório , Recém-Nascido , Humanos , Estudos Prospectivos , Fator de Necrose Tumoral alfa , Interleucina-6 , Prognóstico , Curva ROC , DNA
3.
J Am Chem Soc ; 144(22): 9806-9816, 2022 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-35638261

RESUMO

Polymer electrolytes (PEs) with excellent flexibility, processability, and good contact with lithium metal (Li°) anodes have attracted substantial attention in both academic and industrial settings. However, conventional poly(ethylene oxide) (PEO)-based PEs suffer from a low lithium-ion transference number (TLi+), leading to a notorious concentration gradient and internal cell polarization. Here, we report two kinds of highly lithium-ion conductive and solvent-free PEs using the benzene-based lithium salts, lithium (benzenesulfonyl)(trifluoromethanesulfonyl)imide (LiBTFSI) and lithium (2,4,6-triisopropylbenzenesulfonyl)(trifluoromethanesulfonyl)imide (LiTPBTFSI), which show significantly improved TLi+ and selective lithium-ion conductivity. Using molecular dynamics simulations, we pinpoint the strong π-π stacking interaction between pairs of benzene-based anions as the cause of this improvement. In addition, we show that Li°âˆ¥Li° and Li°âˆ¥LiFePO4 cells with the LiBTFSI/PEO electrolytes present enhanced cycling performance. By considering π-π stacking interactions as a new molecular-level design route of salts for electrolyte, this work provides an efficient and facile novel strategy for attaining highly selective lithium-ion conductive PEs.

4.
Phys Chem Chem Phys ; 24(27): 16712-16723, 2022 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-35770687

RESUMO

Hexamethylguanidinium bis(fluorosulfonyl)imide ([HMG][FSI]) has recently been shown to be a promising solid state organic ionic plastic crystal with potential application in advanced alkali metal batteries. This study provides a detailed exploration of the structural and dynamic behavior of [HMG][FSI] mixtures with the sodium salt NaFSI across the whole composition range from 0 to 100 mol%. All mixtures are solids at room temperature. A combination of differential scanning calorimetry (DSC), synchrotron X-ray diffraction (SXRD) and multinuclear solid state NMR spectroscopy is employed to identify a partial phase diagram. The 25 mol% NaFSI/75 mol% [HMG][FSI] composition presents as the eutectic composition with the eutectic transition temperature at 44 °C. Both DSC and SXRD strongly support the formation of a new compound near 50 mol% NaFSI. Interestingly, the 53 mol% NaFSI [HMG][FSI] composition was consistently found to display features of a pure compound whereas the 50 mol% materials always showed a second phase. Many of the compositions examined showed unusual metastable behaviour. Moreover, the ion dynamics as determined by NMR, indicate that the Na+ and FSI- anions are signifcantly more mobile than the HMG cation in the liquid state (including the metastable state) for these materials.

5.
Chemistry ; 25(53): 12281-12287, 2019 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-31292996

RESUMO

The conversion of renewable plant polyphenol to advanced materials with tailorable properties and various functions is desirable and challenging. In this work, monovalent cation-phenolic crystals contained K+ or Na+ ions were synthesized by using plant polyphenol as an organic source in alkaline solution. The crystal structure was resolved, showing a laminar crystal structure with M+ as connecting nodes. The morphologies (e.g., rod-like and spindle-shaped) and chemical compositions of crystals could be tuned by changing the cations. Interestingly, these polymer crystals exhibited a pH-driven reversible crystal transformation. They transformed into their protonated crystalline form under acidic conditions (e.g., pH 2) and went back to the cation-bound crystalline form in alkaline solutions. Furthermore, the crystals proved excellent antioxidants and heavy metal ion adsorbents.

6.
Phys Chem Chem Phys ; 21(5): 2691-2696, 2019 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-30657496

RESUMO

Protic ionic liquids containing cations with long alkyl chains can form self-assembled micelles, vesicles, microemulsions, and lyotropic liquid crystal structures in water, acid water or tetrahydrofuran, etc. As a result of this unique property, they are regarded as a novel category of amphiphiles, and are gaining importance in the field of colloid and interface chemistry. The critical micelle concentration (CMC) of protic salts, e.g., alkyl-ammonium nitrates in water, was found to increase with decreasing chain length. It is generally believed that a long alkyl chain length is essential for the formation of self-assembled structures. So far, no self-assembled structure has been reported for protic ionic liquids with an alkyl chain length of n < 4. This paper reports on the structure and dynamics of two imidazolium based protic organic salts with no alkyl chain or a methyl group (n = 1) attached to the cation in water solution, determined through a detailed analysis of NMR spectra and pulsed-field gradient NMR data. We demonstrate that these imidazolium cations with no or a short alkyl chain (n = 1) can form a self-assembled clustering structure in water solution, which has a strong influence on the diffusion behavior of imidazolium molecular ions. It is speculated that this self-assembled structure is likely to be present in other similar solutions of ionic liquids with short alkyl chains.

7.
Angew Chem Int Ed Engl ; 58(35): 12070-12075, 2019 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-31259482

RESUMO

Suppressing the mobility of anionic species in polymer electrolytes (PEs) is essential for mitigating the concentration gradient and internal cell polarization, and thereby improving the stability and cycle life of rechargeable alkali metal batteries. Now, an ether-functionalized anion (EFA) is used as a counter-charge in a lithium salt. As the salt component in PEs, it achieves low anionic diffusivity but sufficient Li-ion conductivity. The ethylene oxide unit in EFA endows nanosized self-agglomeration of anions and trapping interactions between the anions and its structurally homologous matrix, poly(ethylene oxide), thus suppressing the mobility of negative charges. In contrast to previous strategies of using anion traps or tethering anions to a polymer/inorganic backbone, this work offers a facile and elegant methodology on accessing selective and efficient Li-ion transport in PEs and related electrolyte materials (for example, composites and hybrid electrolytes).

8.
Angew Chem Int Ed Engl ; 58(47): 16928-16935, 2019 11 18.
Artigo em Inglês | MEDLINE | ID: mdl-31535784

RESUMO

Homochiral metal-organic framework (MOF) membranes have been recently reported for chiral separations. However, only a few high-quality homochiral polycrystalline MOF membranes have been fabricated due to the difficulty in crystallization of a chiral MOF layer without defects on porous substrates. Alternatively, mixed matrix membranes (MMMs), which combine potential advantages of MOFs and polymers, have been widely demonstrated for gas separation and water purification. Here we report novel homochiral MOF-polymer MMMs for efficient chiral separation. Homochirality was successfully incorporated into achiral MIL-53-NH2 nanocrystals by post-synthetic modification with amino acids, such as l-histidine (l-His) and l-glutamic acid (l-Glu). The MIL-53-NH-l-His and MIL-53-NH-l-Glu nanocrystals were then embedded into polyethersulfone (PES) matrix to form homochiral MMMs, which exhibited excellent enantioselectivity for racemic 1-phenylethanol with the highest enantiomeric excess value up to 100 %. This work, as an example, demonstrates the feasibility of fabricating diverse large-scale homochiral MOF-based MMMs for chiral separation.

9.
Angew Chem Int Ed Engl ; 58(23): 7829-7834, 2019 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-30652396

RESUMO

The anion chemistry of lithium salts plays a pivotal role in dictating the physicochemical and electrochemical performance of solid polymer electrolytes (SPEs), thus affecting the cyclability of all-solid-state lithium metal batteries (ASSLMBs). The bis(trifluoromethanesulfonyl)imide anion (TFSI- ) has long been studied as the most promising candidate for SPEs; however, the Li-ion conductivities of the TFSI-based SPEs still remain low (Li-ion transference number: ca. 0.2). In this work, we report new hydrogen-containing anions, conceived based on theoretical considerations, as an electrolyte salt for SPEs. SPEs comprising hydrogen-containing anions achieve higher Li-ion conductivities than TFSI-based ones, and those anions are electrochemically stable for various kinds of ASSLMBs (Li-LiFePO4 , Li-S, and Li-O2 batteries). This opens up a new avenue for designing safe and high-performance ASSLMBs in the future.

10.
Macromol Rapid Commun ; 39(3)2018 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-29205639

RESUMO

Proton conducting polymeric membranes are highly searched in many different technologies ranging from energy to biosensing. Protic ionic liquids and their polymeric version represent a new family of proton conducting molecules with relatively facile synthesis and excellent properties. In this work, protic poly(ionic liquids) having the most popular phosphonium counter-cations are presented for the first time. The synthesis is carried out through proton transfer reactions or through ion exchange reactions by using commercially available tertiary phosphines. Tributyl-, trioctyl-, and tricyclohexyl-phosphine are selected to form the desired cations. Polystyrene sulfonic acid, poly(2-acrylamido-2-methyl-1-propanesulfonic acid), and lithium poly[(4-styrenesulfonyl) (trifluoromethanesulfonyl)imide] polymers are used to form the polymeric anions. The chemical structure of the protic poly(ionic liquids) is confirmed by spectroscopic characterizations such as Fourier transform infrared and nuclear magnetic resonance spectroscopies. Thermal properties of the polymer are characterized by means of differential scanning calorimetry and thermogravimetric analysis. Polymers exhibit good membrane forming ability as well as high ionic conductivities in the range of 10-8 to 10-3 S cm-1 from 30 to 90 °C.


Assuntos
Cátions/química , Líquidos Iônicos/química , Membranas Artificiais , Fosfinas/química , Polímeros/química , Prótons , Ânions/química , Varredura Diferencial de Calorimetria , Imidas/química , Espectroscopia de Ressonância Magnética , Espectroscopia de Infravermelho com Transformada de Fourier , Termogravimetria
11.
Phys Chem Chem Phys ; 20(6): 4579-4586, 2018 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-29376537

RESUMO

Proton conductors are widely used in different electrochemical devices including fuel cells and redox flow batteries. Compared to conventional proton conducting polymer membranes, protic organic ionic plastic crystal (POIPC) is a novel solid-state proton conductor with high proton conductivity even under anhydrous conditions. In this work, different organic protic salts based on the same parent di-functional cation with different anions were synthesized and characterized. It is found that the di-protonated cation plays an important role in defining the thermal properties, leading to stronger plastic crystal behavior and a higher melting point. Static solid-state NMR and the synchrotron XRD results show that the di-protonated cation allows greater dynamics in the crystal in contrast to the mono-protonated counterparts. The 1-(N,N-dimethylammonium)-2-(ammonium)ethane triflate ([DMEDAH2][Tf]2) has the highest ionic conductivity of 1.1 × 10-4 S cm-1 at 50 °C, whereas the bis(trifluoromethanesulfonyl)amide counterpart [DMEDAH2][TFSA]2 has the lowest ionic conductivity (2.8 × 10-7 S cm-1 at 50 °C) with no measureable mobile ion component at this temperature. The fraction of mobile species is significantly suppressed in the TFSA containing salts as against the Tf systems.

12.
Angew Chem Int Ed Engl ; 57(52): 17130-17134, 2018 12 21.
Artigo em Inglês | MEDLINE | ID: mdl-30370963

RESUMO

Homochiral metal-organic frameworks (MOFs) have gained much attention because of their chiral properties and disposition for chiral separation. However, the fabrication of high-quality homochiral MOF membranes remains challenging because of the difficulty in controlling growth of MOF membranes with chiral functionalities. A homochiral zeolitic imidazolate framework-8 (ZIF-8) membrane is reported for efficient chiral separation. The membrane is synthesized by incorporating a natural amino acid, l-histidine (l-His), into the framework of ZIF-8. The homochiral l-His-ZIF-8 membrane exhibits a good selectivity for the R-enantiomer of 1-phenylethanol over the S-enantiomer, showing a high enantiomeric excess value up to 76 %.

13.
Phys Chem Chem Phys ; 19(3): 2225-2234, 2017 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-28054060

RESUMO

Using the organic ionic plastic crystal N-ethyl-N-methylpyrrolidinium bis(fluorosulfonyl)imide ([C2mpyr][FSI]) with electrospun nanofibers, LiFSI doped [C2mpyr][FSI]-PVdF composites were developed as solid state, self-standing electrolyte membranes. Different lithium salt concentration were investigated, with 10 mol% LiFSI found to be optimal amongst those assessed. Composites with different weight ratios of plastic crystal and polymer were prepared and 10 wt% polymer gave the highest conductivity. In addition, the effects of PVdF incorporation on the morphological, thermal, and structural properties of the organic ionic plastic crystal were investigated. Ion mobilities were also studied using solid-state nuclear magnetic resonance techniques. The electrolytes were then assembled into lithium symmetric cells and cycled galvanostatically at 0.13 mA cm-2 at both ambient temperature and at 50 °C, for more than 500 cycles.

14.
Chemphyschem ; 15(16): 3530-5, 2014 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-25145991

RESUMO

Full conformational and energy explorations are conducted on an organic ionic plastic crystal, 1-ethyl-1-methylpyrrolidium tetrafluoroborate [C2mpyr][BF4]. The onsets of various stages of dynamic behaviour, which appear to account for low-temperature solid-solid phase transitions, are investigated by using quantum-chemical simulations. It is suggested that pseudorotation of the pyrrolidine ring occurs in the first instance; the partial rotation of the entire cation subsequently occurs and may be accompanied by reorientation of the ethyl chain as the temperature increases further. A cation-anion configuration, whereby BF4(-) interacts with the C2 mpy cation from the side of the ring, is the most likely structure in the low-temperature phase IV region. These interpretations are supported by (13)C nuclear magnetic resonance chemical-shift analysis.

15.
Chemphyschem ; 15(17): 3720-4, 2014 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-25234638

RESUMO

Elucidating the rate and geometry of molecular dynamics is particularly important for unravelling ion-conduction mechanisms in electrochemical materials. The local molecular motions in the plastic crystal 1-ethyl-1-methylpyrrolidinium tetrafluoroborate ([C2 mpyr][BF4 ]) are studied by a combination of quantum chemical calculations and advanced solid-state nuclear magnetic resonance spectroscopy. For the first time, a restricted puckering motion with a small fluctuation angle of 25° in the pyrrolidinium ring has been observed, even in the low-temperature phase (-45 °C). This local molecular motion is deemed to be particularly important for the material to maintain its plasticity, and hence, its ion mobility at low temperatures.

16.
Soft Matter ; 10(2): 374-82, 2014 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-24651960

RESUMO

Articular cartilage is an example of a highly efficacious water-based, natural lubrication system that is optimized to provide low friction and wear protection at both low and high loads and sliding velocities. One of the secrets of cartilage's superior tribology comes from a unique, multimodal lubrication strategy consisting of both a fluid pressurization mediated lubrication mechanism and a boundary lubrication mechanism supported by surface bound macromolecules. Using a reconstituted network of highly interconnected cellulose fibers and simple modification through the immobilization of polyelectrolytes, we have recreated many of the mechanical and chemical properties of cartilage and the cartilage lubrication system to produce a purely synthetic material system that exhibits some of the same lubrication mechanisms, time dependent friction response, and high wear resistance as natural cartilage tissue. Friction and wear studies demonstrate how the properties of the cellulose fiber network can be used to control and optimize the lubrication and wear resistance of the material surfaces and highlight what key features of cartilage should be duplicated in order to produce a cartilage-mimetic lubrication system.

17.
Phys Chem Chem Phys ; 16(24): 12350-5, 2014 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-24824026

RESUMO

The physicochemical properties of a range of NaNTf2 (or NaTFSI) salt concentrations in N-propyl-N-methylpyrrolidinium bis(fluorosulfonyl)imide (or C3mpyrFSI) ionic liquid were investigated by DSC, conductivity, cyclic voltammetry and diffusivity studies. Cyclic voltammetry indicated a stable sodium plating behavior with a current of 5 mA cm(-2) at 25 °C to 20 mA cm(-2) at 100 °C, along with high reversibility identifying this electrolyte as a possible candidate for sodium-ion or sodium metal battery applications. (23)Na NMR chemical shifts and spectral linewidths (FWHM) indicate a complex coordination of the Na(+) ion which is dependent on both temperature and salt concentration with an apparently stronger coordination to the NTf2 anion upon increasing the NaNTf2 concentration. Temperature dependent PFG-NMR diffusion measurements show that both FSI and NTf2 have a comparable behaviour although the smaller FSI anion is more diffusive.

18.
Sci Adv ; 9(4): eabq1369, 2023 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-36706186

RESUMO

Single-ion selectivity with high precision has long been pursued for fundamental bioinspired engineering and applications such as in ion separation and energy conversion. However, it remains a challenge to develop artificial ion channels to achieve single-ion selectivity comparable to their biological analogs, especially for high Na+/K+ selectivity. Here, we report an artificial sodium channel by subnanoconfinement of 4'-aminobenzo-15-crown-5 ethers (15C5s) into ~6-Å-sized metal-organic framework subnanochannel (MOFSNC). The resulting 15C5-MOFSNC shows an unprecedented Na+/K+ selectivity of tens to 102 and Na+/Li+ selectivity of 103 under multicomponent permeation conditions, comparable to biological sodium channels. A co-ion-responsive single-file transport mechanism in 15C-MOFSNC is proposed for the preferential transport of Na+ over K+ due to the synergetic effects of size exclusion, charge selectivity, local hydrophobicity, and preferential binding with functional groups. This study provides an alternative strategy for developing potential single-ion selective channels and membranes for many applications.

19.
Front Oncol ; 12: 929092, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35847876

RESUMO

Background: Accumulating data support that regular physical activity potentially inhibits chronic colitis, a risk factor for colitis-associated cancer (CAC). However, possible effects of physical activity on CAC and the underlying mechanisms remain poorly understood. Methods: A pretreatment of swimming on azoxymethane/dextran sodium sulfate (AOM/DSS)-induced CAC mice was implemented to determine its protective effect. Inflammation and tumorigenesis were assessed using colorectums from C57BL/6 mice. In order to determine how swimming alters colonic lipid metabolism and gene expression, a comparative analysis was conducted. Meanwhile, alterations in intestinal microbiota and short-chain fatty acids (SCFAs) were detected and analyzed. Finally, an integration analysis of colonic lipid metabolism with gene expression and intestinal microbiota was performed respectively. Result: Swimming pretreatment relieved bowel inflammation and minimized tumor formation. We demonstrated that prostaglandin E2 (PGE2)/PGE2 receptor 2 subtype (EP2) signaling as a potential regulatory target for swimming induces colonic lipid metabolites. Swimming-induced genera, Erysipelatoclostridium, Parabacteroides, Bacteroides, and Rikenellaceae_RC9_gut_group, induced intestinal SCFAs and affected the function of colonic lipid metabolites enriched in glycerophospholipid metabolism and choline metabolism in cancer. Conclusion: According to our experiments, swimming pretreatment can protect mice from CAC by intervention in the possible link between colonic lipid metabolites and PGE2/EP2 signaling. Further, swimming-induced genera and probiotics promoted glycerophospholipid metabolism and choline metabolism in cancer, the major constituents of colonic lipid metabolites, and increased SCFAs, which were also important mechanisms for the anti-inflammatory and anti-tumorigenic effects of swimming.

20.
ACS Appl Mater Interfaces ; 14(3): 4022-4034, 2022 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-35019264

RESUMO

A series of hybrid electrolytes composed of diglyme and ionic liquids (ILs) have been investigated for Na-O2 batteries, as a strategy to control the growth and purity of the discharge products during battery operation. The dependence of chemical composition of the ILs on the size, purity, and distribution of the discharge products has been evaluated using a wide range of experimental and spectroscopic techniques. The morphology and composition of the discharge products found in the Na-O2 cells have a complex dependence on the physicochemical properties of the electrolyte as well as the speciation of the Na+ and superoxide radical anion. All of these factors control the nucleation and growth phenomena as well as electrolyte stability. Smaller discharge particle sizes and largely homogeneous (2.7 ± 0.5 µm) sodium superoxide (NaO2) crystals with only 9% of side products were found in the hybrid electrolyte containing the pyrrolidinium IL with a linear alkyl chain. The long-term cyclability of Na-O2 batteries with high Coulombic efficiency (>90%) was obtained for this electrolyte with fewer side products (20 cycles at 0.5 mA h cm-2). In contrast, rapid failure was observed with the use of the phosphonium-based electrolyte, which strongly stabilizes the superoxide anion. A high discharge capacity (4.46 mA h cm-2) was obtained for the hybrid electrolyte containing the pyrrolidinium-based IL bearing a linear alkyl chain with a slightly lower value (3.11 mA h cm-2) being obtained when the hybrid electrolyte contained similar pyrrolidinium-based IL bearing an alkoxy chain.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA