Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 52
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Neurobiol Dis ; 198: 106549, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38830476

RESUMO

BACKGROUND: Multiple system atrophy (MSA) and Parkinson's disease (PD) are neurodegenerative disorders characterized by α-synuclein pathology, disrupted iron homeostasis and impaired neurochemical transmission. Considering the critical role of iron in neurotransmitter synthesis and transport, our study aims to identify distinct patterns of whole-brain iron accumulation in MSA and PD, and to elucidate the corresponding neurochemical substrates. METHODS: A total of 122 PD patients, 58 MSA patients and 78 age-, sex-matched health controls underwent multi-echo gradient echo sequences and neurological evaluations. We conducted voxel-wise and regional analyses using quantitative susceptibility mapping to explore MSA or PD-specific alterations in cortical and subcortical iron concentrations. Spatial correlation approaches were employed to examine the topographical alignment of cortical iron accumulation patterns with normative atlases of neurotransmitter receptor and transporter densities. Furthermore, we assessed the associations between the colocalization strength of neurochemical systems and disease severity. RESULTS: MSA patients exhibited increased susceptibility in the striatal, midbrain, cerebellar nuclei, as well as the frontal, temporal, occipital lobes, and anterior cingulate gyrus. In contrast, PD patients displayed elevated iron levels in the left inferior occipital gyrus, precentral gyrus, and substantia nigra. The excessive iron accumulation in MSA or PD correlated with the spatial distribution of cholinergic, noradrenaline, glutamate, serotonin, cannabinoids, and opioid neurotransmitters, and the degree of this alignment was related to motor deficits. CONCLUSIONS: Our findings provide evidence of the interaction between iron accumulation and non-dopamine neurotransmitters in the pathogenesis of MSA and PD, which inspires research on potential targets for pharmacotherapy.


Assuntos
Atrofia de Múltiplos Sistemas , Doença de Parkinson , Humanos , Atrofia de Múltiplos Sistemas/metabolismo , Atrofia de Múltiplos Sistemas/diagnóstico por imagem , Atrofia de Múltiplos Sistemas/patologia , Doença de Parkinson/metabolismo , Doença de Parkinson/diagnóstico por imagem , Doença de Parkinson/patologia , Masculino , Feminino , Pessoa de Meia-Idade , Idoso , Encéfalo/metabolismo , Encéfalo/diagnóstico por imagem , Imageamento por Ressonância Magnética/métodos , Ferro/metabolismo , Neurotransmissores/metabolismo , Mapeamento Encefálico/métodos
2.
J Neurosci Res ; 102(5): e25357, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38803227

RESUMO

Aging is widely acknowledged as the primary risk factor for brain degeneration, with Parkinson's disease (PD) tending to follow accelerated aging trajectories. We aim to investigate the impact of structural brain aging on the temporal dynamics of a large-scale functional network in PD. We enrolled 62 PD patients and 32 healthy controls (HCs). The level of brain aging was determined by calculating global and local brain age gap estimates (G-brainAGE and L-brainAGE) from structural images. The neural network activity of the whole brain was captured by identifying coactivation patterns (CAPs) from resting-state functional images. Intergroup differences were assessed using the general linear model. Subsequently, a spatial correlation analysis between the L-brainAGE difference map and CAPs was conducted to uncover the anatomical underpinnings of functional alterations. Compared to HCs (-3.73 years), G-brainAGE was significantly higher in PD patients (+1.93 years), who also exhibited widespread elevation in L-brainAGE. G-brainAGE was correlated with disease severity and duration. PD patients spent less time in CAPs involving activated default mode and the fronto-parietal network (DMN-FPN), as well as the sensorimotor and salience network (SMN-SN), and had a reduced transition frequency from other CAPs to the DMN-FPN and SMN-SN CAPs. Furthermore, the pattern of localized brain age acceleration showed spatial similarities with the SMN-SN CAP. Accelerated structural brain aging in PD adversely affects brain function, manifesting as dysregulated brain network dynamics. These findings provide insights into the neuropathological mechanisms underlying neurodegenerative diseases and imply the possibility of interventions for modifying PD progression by slowing the brain aging process.


Assuntos
Envelhecimento , Encéfalo , Imageamento por Ressonância Magnética , Doença de Parkinson , Humanos , Doença de Parkinson/fisiopatologia , Doença de Parkinson/diagnóstico por imagem , Doença de Parkinson/patologia , Masculino , Feminino , Pessoa de Meia-Idade , Envelhecimento/fisiologia , Envelhecimento/patologia , Encéfalo/diagnóstico por imagem , Encéfalo/fisiopatologia , Idoso , Rede Nervosa/diagnóstico por imagem , Rede Nervosa/fisiopatologia
3.
J Neurooncol ; 2024 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-38874844

RESUMO

PURPOSE: To evaluate the performance of multi-pool Chemical exchange saturation transfer (CEST) MRI in prediction of glioma grade, isocitrate dehydrogenase (IDH) mutation, alpha-thalassemia/mental retardation syndrome X-linked (ATRX) loss and Ki-67 labeling index (LI), based on the fifth edition of the World Health Organization classification of central nervous system tumors (WHO CNS5). METHODS: 95 patients with adult-type diffuse gliomas were analyzed. The amide, direct water saturation (DS), nuclear Overhauser enhancement (NOE), semi-solid magnetization transfer (MT) and amine signals were derived using Lorentzian fitting, and asymmetry-based amide proton transfer-weighted (APTwasym) signal was calculated. The mean value of tumor region was measured and intergroup differences were estimated using student-t test. The receiver operating curve (ROC) and area under the curve (AUC) analysis were used to evaluate the diagnostic performance of signals and their combinations. Spearman correlation analysis was performed to evaluate tumor proliferation. RESULTS: The amide and DS signals were significantly higher in high-grade gliomas compared to low-grade gliomas, as well as in IDH-wildtype gliomas compared to IDH-mutant gliomas (all p < 0.001). The DS, MT and amine signals showed significantly differences between ATRX loss and retention in grade 2/3 IDH-mutant gliomas (all p < 0.05). The combination of signals showed the highest AUC in prediction of grade (0.857), IDH mutation (0.814) and ATRX loss (0.769). Additionally, the amide and DS signals were positively correlated with Ki-67 LI (both p < 0.001). CONCLUSION: Multi-pool CEST MRI demonstrated good potential to predict glioma grade, IDH mutation, ATRX loss and Ki-67 LI.

4.
Neurol Sci ; 2024 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-38492126

RESUMO

OBJECTIVES: To explore the oxygen metabolism level of different types of lesions in relapsing-remitting multiple sclerosis (RRMS) patients by oxygen extraction fraction (OEF) both cross-sectionally and longitudinally. METHODS: Forty-six RRMS patients and forty-one healthy controls (HC) went MRI examination. The quantitative susceptibility mapping (QSM) and OEF map were reconstructed from a 3D multi-echo gradient echo sequence. MS lesions in white matter were classified as contrast-enhancing lesions (CELs) on post-gadolinium T1-weighted sequence, paramagnetic rim lesions (PRLs), hyperintense lesions and non-hyperintense lesions on QSM, respectively. The susceptibility and OEF of different types of lesions were compared. The susceptibility and OEF values were measured and compared among different types of lesions. Among these RRMS patients, seventeen had follow-up MRI and 232 lesions, and baseline to follow-up longitudinal changes in susceptibility and OEF were measured. RESULTS: PRLs had higher susceptibility and lower OEF than CELs, hyperintense lesions, and non-hyperintense lesions. The hyperintense lesions had higher susceptibility and lower OEF than non-hyperintense lesions. In longitudinal changes, PRLs had susceptibility increased (P < 0.001) and OEF decreased (P < 0.001). The hyperintense lesions showed significant decreases in susceptibility (P = 0.020), and non-hyperintense lesions showed significant increases in OEF during follow-up (P = 0.005). Notably, hyperintense lesions may convert to PRLs or non-hyperintense lesions as time progresses, accompanied by changes of OEF and susceptibility in the lesions. CONCLUSION: This study revealed tissue damage and oxygen metabolism level in different types of MS lesions. The OEF may contribute to further understanding the evolution of MS lesions.

5.
Chem Biodivers ; : e202400937, 2024 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-38682724

RESUMO

Three new indole alkaloids, named talatensindoids A-C (1-3), together with two known biogenetically related indole alkaloids tryptamine (4) and L-tryptophan (5) were isolated from the Talaromyces assiutensis JTY2 based on the guidance of OSMAC approach. The structures of these indole alkaloids were determined by comprehensive spectroscopic analyses. The absolute configuration of 3 was confirmed by X-ray crystallographic analysis. Compound 1 represent the rare example of a chlorine-substituted indole alkaloid from natural products. The inhibitory activity of compounds 1-5 against two phytopathogenic fungi and three phytopathogenic bacteria was evaluated. Compound 1 exhibited broad spectrum antibacterial activities.

6.
Hum Brain Mapp ; 44(9): 3730-3743, 2023 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-37042391

RESUMO

Anxiety is characterized by altered brain networks. Directional information flows among dynamic brain networks concerning neuropathogenesis of anxiety have not yet been investigated. The role of directional influences between networks in gene-environment effects on anxiety remains to be further elucidated. In a large community sample, this resting-state functional MRI study estimated dynamic effective connectivity among large-scale brain networks based on a sliding-window approach and Granger causality analysis, providing dynamic and directional information for signal transmission in networks. We first explored altered effective connectivity among networks related to anxiety in distinct connectivity states. Due to the potential gene-environment effects on brain and anxiety, we further performed mediation and moderated mediation analyses to investigate the role of altered effective connectivity networks in relationships between polygenic risk scores, childhood trauma, and anxiety. State and trait anxiety scores showed correlations with altered effective connectivity among extensive networks in distinct connectivity states (p < .05, uncorrected). Only in a more frequent and strongly connected state, there were significant correlations between altered effective connectivity networks and trait anxiety (PFDR <0.05). Furthermore, mediation and moderated mediation analyses showed that the effective connectivity networks played a mediating role in the effects of childhood trauma and polygenic risk on trait anxiety. State-dependent effective connectivity changes among brain networks were significantly related to trait anxiety, and mediated gene-environment effects on trait anxiety. Our work sheds novel light on the neurobiological mechanisms underlying anxiety, and provides new insights into early objective diagnosis and intervention evaluation.


Assuntos
Mapeamento Encefálico , Imageamento por Ressonância Magnética , Humanos , Encéfalo , Ansiedade/diagnóstico por imagem , Transtornos de Ansiedade
7.
Genet Res (Camb) ; 2023: 9991613, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37575977

RESUMO

Immunoregulation is crucial to septic shock (SS) but has not been clearly explained. Our aim was to explore potential biomarkers for SS by pathway and transcriptional analyses of immune-related genes to improve early detection. GSE57065 and GSE95233 microarray data were used to screen differentially expressed genes (DEGs) in SS. Gene Ontology and KEGG (Kyoto Encyclopedia of Genes and Genomes) pathway enrichment analyses of DEGs were performed, and correlations between immune cell and pathway enrichment scores were analyzed. The predictive value of candidate genes was evaluated by receiver operating characteristic (ROC) curves. GSE66099, GSE4607, and GSE13904 datasets were used for external validation. Blood samples from six patients and six controls were collected for validation by qRT-PCR and western blotting. In total, 550 DEGs in SS were identified; these genes were involved in the immune response, inflammation, and infection. Immune-related pathways and levels of infiltration of CD4 + TCM, CD8 + T cells, and preadipocytes differed between SS cases and controls. Seventeen genes were identified as potential biomarkers of SS (areas under ROC curves >0.9). The downregulation of CD8A, CD247, CD3G, LCK, and HLA-DRA in SS was experimentally confirmed. We identified several immune-related biomarkers in SS that may improve early identification of disease risk.


Assuntos
Choque Séptico , Humanos , Choque Séptico/diagnóstico , Choque Séptico/genética , Genes MHC da Classe II , Biomarcadores , Perfilação da Expressão Gênica , Cadeias alfa de HLA-DR , Biologia Computacional
8.
J Neuroradiol ; 50(6): 562-567, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37301366

RESUMO

BACKGROUND AND PURPOSE: While the occurrence of glymphatic system dysfunction has been observed in temporal lobe epilepsy (TLE), the potential asymmetry of this system has yet to be investigated in the TLE context. We aimed to investigate the glymphatic system function in both hemispheres and to analyze asymmetric features of the glymphatic system in TLE patients using diffusion tensor image analysis along the perivascular space (DTI-ALPS) method. MATERIALS AND METHODS: 43 patients (left TLE (LTLE), n = 20; right TLE (RTLE), n = 23) and 39 healthy controls (HC) were enrolled in this study. The DTI-ALPS index was calculated for the left (left ALPS index) and right (right ALPS index) hemispheres respectively. An asymmetry index (AI) was calculated by AI = (Right - Left)/ [(Right + Left)/2] to represent the asymmetric pattern. Independent two sample t-test, two-sample paired t-test or one-way ANOVA with Bonferroni correction were conducted to compare the differences in ALPS indices and AI among the groups. RESULTS: Both left ALPS index (p = 0.040) and right ALPS index (p = 0.001) of RTLE patients were significantly decreased, while only left ALPS index of LTLE patients (p = 0.005) was reduced. Compared to contralateral ALPS index, the ipsilateral ALPS index was significantly decreased in TLE (p = 0.008) and RTLE (p = 0.009) patients. Leftward asymmetry of the glymphatic system was found in HC (p = 0.045) and RTLE (p = 0.009) patients. The LTLE patients presented reduced asymmetric traits when compared to RTLE patients (p = 0.029). CONCLUSION: The TLE patients exhibited altered ALPS indices, which could be triggered by glymphatic system dysfunction. Altered ALPS indices were more severe in ipsilateral than in the contralateral hemisphere. Moreover, LTLE and RTLE patients exhibited different change patterns of the glymphatic system. In addition, glymphatic system function presented asymmetric patterns in both normal adult brain and RTLE patients.


Assuntos
Epilepsia do Lobo Temporal , Sistema Glinfático , Adulto , Humanos , Epilepsia do Lobo Temporal/diagnóstico por imagem , Sistema Glinfático/diagnóstico por imagem , Imageamento por Ressonância Magnética/métodos , Mapeamento Encefálico , Encéfalo/diagnóstico por imagem
9.
J Neuroradiol ; 2023 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-37774912

RESUMO

BACKGROUND: Parkinson's disease (PD) is characterized by loss of selectively vulnerable neurons within the basal ganglia circuit and progressive atrophy in subcortical and cortical regions. However, the impact of neurodegenerative pathology on the topological organization of cortical morphological networks has not been explored. The aims of this study were to investigate altered network patterns of covariance in cortical thickness and complexity, and to evaluate how morphological network integrity in PD is related to motor impairment. METHODS: Individual morphological networks were constructed for 50 PD patients and 46 healthy controls (HCs) by estimating interregional similarity distributions in surface-based indices. We performed graph theoretical analysis and network-based statistics to detect PD-related alterations and further examined the correlation of network metrics with clinical scores. Furthermore, support vector regression based on topological characteristics was applied to predict the severity of motor impairment in PD. RESULTS: Compared with HCs, PD patients showed lower local efficiency (p = 0.004), normalized characteristic path length (p = 0.022), and clustering coefficient (p = 0.005) for gyrification index-based morphological brain networks. Nodal topological abnormalities were mainly in the frontal, parietal and temporal regions, and impaired morphological connectivity was involved in the sensorimotor and default mode networks. The support vector regression model using network-based features allowed prediction of motor symptom severity with a correlation coefficient of 0.606. CONCLUSIONS: This study identified a disrupted topological organization of cortical morphological networks that could substantially advance our understanding of the network degeneration mechanism of PD and might offer indicators for monitoring disease progression.

10.
J Magn Reson Imaging ; 55(4): 1171-1180, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-34487595

RESUMO

BACKGROUND: Corticospinal tract (CST) injury has been shown to exert a major influence on functional recovery after ischemic stroke. PURPOSE: To evaluate the prognostic value of CST injury estimated using a recent developed tractometry-based method. STUDY TYPE: Prospective. POPULATION: Forty-eight patients with CST damage induced by stroke lesion who underwent brain magnetic resonance imaging within 7 days from onset. SEQUENCE: Diffusion-weighted imaging (b = 1000 seconds/mm2 ) and diffusion kurtosis imaging (DKI) spin-echo echo-planar sequence with three b-values (0, 1250, and 2500 seconds/mm2 ) at 3.0 T. ASSESSMENT: A recently developed approach that combines tract segmentation and orientation mapping was used for CST-specific tractography and tractometry. CST injury was estimated using the proposed method with diffusion metrics extracted from DKI sequence and with the first principal component (PC1) of the metrics. We also calculated the weighted lesion load (wLL) for comparison. Clinical evaluation included the National Institutes of Health Stroke Score in the acute phase and the modified Rankin scale at 3 months post-stroke. The correlations between CST injury and initial motor impairment, as well as the prognostic values of CST injury for functional outcomes were evaluated. STATISTICAL TESTS: Pearson correlation and logistic regression. Area under the receiver operating characteristic curve. P < 0.05 was considered statistically significant. RESULTS: CST injury calculated with diffusion metrics except fractional anisotropy all showed significant correlations with initial motor impairment. PC1 achieved the largest correlation coefficient (R = 0.65) compared with wLL and other diffusion metrics. In addition to wLL, DKI_AK, AFD_total, and PC1 maximum all showed predictive values for functional outcomes. DATA CONCLUSION: Structural injury to CST is important for the assessment of the extent of injury and the prediction of functional outcome. The method proposed in our study could provide an imaging indicator to quantify the CST injury after ischemic stroke. LEVEL OF EVIDENCE: 2 TECHNICAL EFFICACY: Stage 1.


Assuntos
AVC Isquêmico , Acidente Vascular Cerebral , Imagem de Tensor de Difusão , Humanos , Estudos Prospectivos , Tratos Piramidais/diagnóstico por imagem , Acidente Vascular Cerebral/diagnóstico por imagem
11.
BMC Infect Dis ; 20(1): 952, 2020 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-33308159

RESUMO

BACKGROUND: Coronavirus disease 2019 (COVID-19) is caused by severe acute respiratory syndrome coronavirus 2, and outbreaks have occurred worldwide. Laboratory test results are an important basis for clinicians to determine patient condition and formulate treatment plans. METHODS: Fifty-two thousand six hundred forty-four laboratory test results with continuous values of adult inpatients who were diagnosed with COVID-19 and hospitalized in the Fifth Hospital in Wuhan between 16 January 2020 and 18 March 2020 were compiled. The first and last test results were compared between survivors and non-survivors with variance test or Welch test. Laboratory test variables with significant differences were then included in the temporal change analysis. RESULTS: Among 94 laboratory test variables in 82 survivors and 25 non-survivors with COVID-19, white blood cell count, neutrophil count/percentage, mean platelet volume, platelet distribution width, platelet-large cell percentage, hypersensitive C-reactive protein, procalcitonin, D-dimer, fibrin (ogen) degradation product, middle fluorescent reticulocyte percentage, immature reticulocyte fraction, lactate dehydrogenase were significantly increased (P < 0.05), and lymphocyte count/percentage, monocyte percentage, eosinophil percentage, prothrombin activity, low fluorescent reticulocyte percentage, plasma carbon dioxide, total calcium, prealbumin, total protein, albumin, albumin-globulin ratio, cholinesterase, total cholesterol, nonhigh-density/low-density/small-dense-low-density lipoprotein cholesterol were significantly decreased in non-survivors compared with survivors (P < 0.05), in both first and last tests. Prothrombin time, prothrombin international normalized ratio, nucleated red blood cell count/percentage, high fluorescent reticulocyte percentage, plasma uric acid, plasma urea nitrogen, cystatin C, sodium, phosphorus, magnesium, myoglobin, creatine kinase (isoenzymes), aspartate aminotransferase, alkaline phosphatase, glucose, triglyceride were significantly increased (P < 0.05), and eosinophil count, basophil percentage, platelet count, thrombocytocrit, antithrombin III, red blood cell count, haemoglobin, haematocrit, total carbon dioxide, acidity-basicity, actual bicarbonate radical, base excess in the extracellular fluid compartment, estimated glomerular filtration rate, high-density lipoprotein cholesterol, apolipoprotein A1/ B were significantly decreased in non-survivors compared with survivors (P < 0.05), only in the last tests. Temporal changes in 26 variables, such as lymphocyte count/percentage, neutrophil count/percentage, and platelet count, were obviously different between survivors and non-survivors. CONCLUSIONS: By the comprehensive usage of the laboratory markers with different temporal changes, patients with a high risk of COVID-19-associated death or progression from mild to severe disease might be identified, allowing for timely targeted treatment.


Assuntos
Biomarcadores/sangue , COVID-19/sangue , Sobreviventes/estatística & dados numéricos , Proteína C-Reativa/metabolismo , Feminino , Produtos de Degradação da Fibrina e do Fibrinogênio/metabolismo , Humanos , Pacientes Internados/estatística & dados numéricos , Contagem de Leucócitos , Contagem de Linfócitos , Masculino , Pessoa de Meia-Idade , Neutrófilos , Pandemias , Pró-Calcitonina/sangue , Estudos Retrospectivos , SARS-CoV-2 , Fatores de Tempo
12.
Med Sci Monit ; 26: e921502, 2020 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-32066649

RESUMO

BACKGROUND Circular RNAs (circRNAs) are key regulators that take part in the carcinogenesis and development of breast cancer. The current study aimed to identify the expression of and explored the function of circRNA-0001283 in breast cancer. MATERIAL AND METHODS Breast cancer tissue samples were tested using high-throughput sequencing to identify the levels of relative genes; and proteins were addressed by using quantitative real-time polymerase chain reaction (qRT-PCR) and western-blot. Cell ability and cell apoptosis were investigated by Cell Counting Kit-8 (CCK-8) and flow cytometry. Invasion was detected by Transwell invasion assay. The identification of target genes was analyzed by dual-luciferase reporter assay. RESULTS Downregulation of circRNA-0001283 expression was observed in breast cancer tissue samples. Ectopic expression of circRNA-0001283 remarkably suppressed cell viability and invasion, and induced apoptosis in breast cancer cells. Furthermore, circRNA-0001283 bound to miR-187 and decreased the expression of miR-187, which resulted in inhibition in cell growth and invasion. Finally, we showed that circRNA-0001283 positively regulated HIPK3 expression by sponging miR-187. CONCLUSIONS The results reveal a new functional circRNA-0001283 in breast cancer and may provide targets for developing novel therapeutic strategies for breast cancer.


Assuntos
Neoplasias da Mama/genética , Neoplasias da Mama/patologia , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , MicroRNAs/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , RNA Circular/metabolismo , Transdução de Sinais , Apoptose/genética , Sequência de Bases , Linhagem Celular Tumoral , Proliferação de Células/genética , Regulação para Baixo/genética , Feminino , Regulação Neoplásica da Expressão Gênica , Humanos , NF-kappa B/metabolismo , Invasividade Neoplásica , RNA Circular/genética
13.
Brain Struct Funct ; 229(4): 843-852, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38347222

RESUMO

Neuromelanin hypopigmentation within substantia nigra pars compacta (SNc) reflects the loss of pigmented neurons, which in turn contributes to the dysfunction of the nigrostriatal and striato-cortical pathways in Parkinson's disease (PD). Our study aims to investigate the relationships between SN degeneration manifested by neuromelanin reduction, functional connectivity (FC) among large-scale brain networks, and motor impairment in PD. This study included 68 idiopathic PD patients and 32 age-, sex- and education level-matched healthy controls who underwent neuromelanin-sensitive magnetic resonance imaging (MRI), functional MRI, and motor assessments. SN integrity was measured using the subregional contrast-to-noise ratio calculated from neuromelanin-sensitive MRI. Resting-state FC maps were obtained based on the independent component analysis. Subsequently, we performed partial correlation and mediation analyses in SN degeneration, network disruption, and motor impairment for PD patients. We found significantly decreased neuromelanin within SN and widely altered inter-network FCs, mainly involved in the basal ganglia (BG), sensorimotor and frontoparietal networks in PD. In addition, decreased neuromelanin content was negatively correlated with the dorsal sensorimotor network (dSMN)-medial visual network connection (P = 0.012) and dSMN-BG connection (P = 0.004). Importantly, the effect of SN neuromelanin hypopigmentation on motor symptom severity in PD is partially mediated by the increased connectivity strength between BG and dSMN (indirect effect = - 1.358, 95% CI: - 2.997, - 0.147). Our results advanced our understanding of the interactions between neuromelanin hypopigmentation in SN and altered FCs of functional networks in PD and suggested the potential of multimodal metrics for early diagnosis and monitoring the response to therapies.


Assuntos
Hipopigmentação , Transtornos Motores , Doença de Parkinson , Humanos , Doença de Parkinson/complicações , Doença de Parkinson/patologia , Substância Negra/metabolismo , Melaninas/metabolismo , Imageamento por Ressonância Magnética/métodos , Hipopigmentação/metabolismo , Hipopigmentação/patologia
14.
Transl Cancer Res ; 13(5): 2518-2534, 2024 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-38881923

RESUMO

Background: Elevated expression of SLC7A11, in conjunction with glucose deprivation, has revealed disulfidptosis as an emerging cell death modality. However, the prevalence of disulfidptosis across tumor cell lines, irrespective of SLC7A11 levels, remains uncertain. Additionally, deletion of the ribophorin I (RPN1) gene imparts resistance to disulfidptosis, yet the precise mechanism linking RPN1 to disulfidptosis remains elusive. The aim of this study is to determine the mechanism of RPN1-induced disulfidptosis and to determine the possibility of RPN1 as a pan-cancer marker. Methods: We hypothesized the widespread occurrence of disulfidptosis in various tumor cells, and proposed that RPN1-mediated disulfidptosis may be executed through cell skeleton breakdown. Experimental validation was conducted via flow cytometry, immunofluorescence, and western blot techniques. Furthermore, given RPN1's status as an emerging cell death marker, we utilized bioinformatics to analyze its expression in tumor tissues, clinical relevance, mechanisms within the tumor microenvironment, and potential for immunotherapy. Results: Conducting experiments on breast cancer (MDA-MB-231) and lung cancer (A549) cell lines under glucose-starved conditions, we found that RPN1 primarily induces cell skeleton breakdown to facilitate disulfidptosis. RPN1 demonstrated robust messenger RNA (mRNA) expression across 16 solid tumors, validated by data from 12 tumor types in the Gene Expression Omnibus (GEO). Across 12 cancer types, RPN1 exhibited significant diagnostic potential, particularly excelling in accuracy for glioblastoma (GBM). Elevated RPN1 expression in tumor tissues was found to correlate with improved overall survival (OS) in certain cancers [diffuse large B-cell lymphoma (DLBC) and thymoma (THYM)] but poorer prognosis in others [adrenocortical carcinoma (ACC), kidney chromophobe (KICH), brain lower grade glioma (LGG), liver hepatocellular carcinoma (LIHC), and pancreatic adenocarcinoma (PAAD)]. RPN1 is enriched in immune-related pathways and correlates with immune scores in tumor tissues. In urothelial carcinoma (UCC), RPN1 demonstrates potential in predicting the efficacy of anti-programmed cell death ligand 1 (PD-L1) immune therapy. Conclusions: This study underscores RPN1's role in facilitating disulfidptosis, its broad relevance as a pan-cancer biomarker, and its association with the efficacy of anti-PD-L1 immune therapy.

15.
Brain Imaging Behav ; 2024 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-38809332

RESUMO

The high and increasing proportion of single-parent families is considered a risk factor associated with various childhood trauma experiences. Consequently, concerns have been raised regarding the potential long-term effects of the childhood single-parent family structure. In this study, we employed advanced magnetic resonance imaging technology, including morphometric similarity mapping, functional connectivity density, and network-based analysis, to investigate brain connectivity and behavioral differences among young adults who were raised in single-parent families. Our study also aimed to explore the relationship between these differences and childhood trauma experiences. The results showed that individuals who grew up in single-parent families exhibited higher levels of anxiety, depression, and harm-avoidant personality. The multimodal MRI analysis further showed differences in regional and network-based connectivity properties in the single-parent family group, including increased functional connectivity density in the left inferior parietal lobule, enhanced cortical structural connectivity between the left isthmus cingulate cortex and peri-calcarine cortex, and an increase in temporal functional connectivity. Moreover, elevated levels of anxiety and depression, along with heightened functional connectivity density in the left inferior parietal lobule and increased temporal functional connectivity, were found to be correlated with a greater number of childhood trauma experiences. Through analyzing multiple data patterns, our study provides objective neuropsychobiological evidence for the enduring impact of childhood single-parent family structure on psychiatric vulnerability in adulthood.

16.
Mult Scler Relat Disord ; 85: 105550, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38493535

RESUMO

OBJECTIVES: To investigate the potential link among choroid plexus (CP) volume, glymphatic clearance and brain structural change in relapsing-remitting multiple sclerosis (RRMS) patients. MATERIALS AND METHODS: Sixty-five RRMS patients and 48 healthy controls (HC) underwent MRI examination. The diffusion tensor image analysis along the perivascular space (DTI-ALPS) was calculated to reflect glymphatic system function. The brain structure volume and DTI-ALPS index were compared between RRMS and HC. The mediating effect of the DTI-ALPS index between CP volume and brain structural changes was further investigated. The longitudinal changes of brain structure and DTI-ALPS index were compared in 20 RRMS patients. RESULTS: Compared to HC, CP volume in RRMS was significantly increased (P < 0.001), and DTI-ALPS index was significantly decreased (P = 0.001). The volumes of white matter, thalamus, putamen and pallidum were significantly decreased in RRMS, and the volumes of lateral ventricle and third ventricle were increased. Mediation analysis showed DTI-ALPS index partially mediated the association between CP enlargement and deep gray matter (DGM) atrophy in RRMS, and between CP enlargement and ventricle enlargement. CP volume and DTI-ALPS index were also significantly correlated with Expanded Disability Status Scale (EDSS) (P = 0.006, P = 0.043). Notably, the variation of DTI_ALPS index during the follow-up period were significantly and negatively correlated with the variation of EDSS (P = 0.045). CONCLUSION: Enlarged CP volume and decreased DTI_ALPS index may be closely related to DGM atrophy and ventricular enlargement in RRMS, and may be potential imaging markers of clinical disability.


Assuntos
Plexo Corióideo , Imagem de Tensor de Difusão , Sistema Glinfático , Esclerose Múltipla Recidivante-Remitente , Humanos , Esclerose Múltipla Recidivante-Remitente/diagnóstico por imagem , Esclerose Múltipla Recidivante-Remitente/patologia , Esclerose Múltipla Recidivante-Remitente/fisiopatologia , Masculino , Feminino , Adulto , Plexo Corióideo/diagnóstico por imagem , Plexo Corióideo/patologia , Sistema Glinfático/diagnóstico por imagem , Sistema Glinfático/patologia , Pessoa de Meia-Idade , Atrofia/patologia , Encéfalo/diagnóstico por imagem , Encéfalo/patologia , Substância Cinzenta/diagnóstico por imagem , Substância Cinzenta/patologia
17.
Front Immunol ; 15: 1362459, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38482014

RESUMO

Inflammation is an important immune response of the body. It is a physiological process of self-repair and defense against pathogens taken up by biological tissues when stimulated by damage factors such as trauma and infection. Inflammation is the main cause of high morbidity and mortality in most diseases and is the physiological basis of the disease. Targeted therapeutic strategies can achieve efficient toxicity clearance at the inflammatory site, reduce complications, and reduce mortality. Sphingosine-1-phosphate (S1P), a lipid signaling molecule, is involved in immune cell transport by binding to S1P receptors (S1PRs). It plays a key role in innate and adaptive immune responses and is closely related to inflammation. In homeostasis, lymphocytes follow an S1P concentration gradient from the tissues into circulation. One widely accepted mechanism is that during the inflammatory immune response, the S1P gradient is altered, and lymphocytes are blocked from entering the circulation and are, therefore, unable to reach the inflammatory site. However, the full mechanism of its involvement in inflammation is not fully understood. This review focuses on bacterial and viral infections, autoimmune diseases, and immunological aspects of the Sphks/S1P/S1PRs signaling pathway, highlighting their role in promoting intradial-adaptive immune interactions. How S1P signaling is regulated in inflammation and how S1P shapes immune responses through immune cells are explained in detail. We teased apart the immune cell composition of S1P signaling and the critical role of S1P pathway modulators in the host inflammatory immune system. By understanding the role of S1P in the pathogenesis of inflammatory diseases, we linked the genomic studies of S1P-targeted drugs in inflammatory diseases to provide a basis for targeted drug development.


Assuntos
Inflamação , Esfingosina , Esfingosina/análogos & derivados , Humanos , Esfingosina/metabolismo , Inflamação/metabolismo , Lisofosfolipídeos/metabolismo , Transdução de Sinais/fisiologia
18.
Quant Imaging Med Surg ; 14(3): 2614-2626, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38545072

RESUMO

Background: Paramagnetic rim lesions (PRLs) on susceptibility magnetic resonance sequences have been suggested as an imaging marker of disease progression in multiple sclerosis. This retrospective cross-sectional study aimed to investigate the impact of PRLs on cortical thickness and gray matter (GM) to white matter (WM) contrast in relapsing-remitting multiple sclerosis (RRMS). Methods: A total of 82 RRMS patients (40 patients with at least 1 PRL and 42 patients without PRL) and 43 healthy controls (HC) were included in this study. The T1-weighted images (T1WI) were processed with the FreeSurfer pipeline. GM to WM signal intensity ratio (GWR) was obtained from T1WI by dividing the GM signal intensity by the WM signal intensity for each vertex. Group differences in cortical thickness and GWR were tested on reconstructed cortical surface. Results: Compared to HC, patients with PRL had thinner mean cortical thickness (P<0.001), higher mean GWR (P=0.001), and lower brain structure volumes (cortex volume, P=0.001; WM volume, P<0.001; deep GM volume, P<0.001). Vertex-based analysis found significant cortical thinning in several regions and increased GWR in a wider range of regions in patients with PRL. The two types of clusters had both overlapping regions and independent regions. However, in patients without PRL, only a few regions showed significant cortical thickness changes. Correlation analysis found that in patients with PRL, only PRL volume showed a significant negative correlation with mean cortical thickness (P=0.048), and PRL volume and count, non-PRL count, and total lesion volume were significantly and positively correlated with mean GWR (P<0.05). Conclusions: There were significant changes in cortical thickness, GWR, and brain structure volume in RRMS patients with PRL that may contribute to further understanding of the pathological mechanisms underlying neurological tissue damage.

19.
Quant Imaging Med Surg ; 14(3): 2165-2176, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38545075

RESUMO

Background: White matter microstructure is valued for being an indicator of neural network integrity, which plays an indispensable role in the execution of advanced brain functions. Although the number of publications has increased in the past 10 years, no comprehensive analysis has yet been conducted of this field. Therefore, this study aimed to identify the research hotspots and trends in research on white matter microstructure using a bibliometric analysis of the related literature published from 2013 to 2022. Methods: VOSviewer and CiteSpace were used to objectively analyze the research articles concerning white matter microstructure, which were retrieved from the Web of Science Core Collection (WoSCC). Results: A total of 5,806 publications were obtained, with the number of published articles increasing annually over the past decade. The United States, China, the United Kingdom, and Canada maintained the top positions worldwide and had strong cooperative relationships. The top institution and journal were Harvard Medical School and Neuroimage, respectively. Alexander Leemans, Marek Kubicki, and Martha E Shenton were the most productive authors. Thematic keywords mainly included "diffusion tensor imaging" (DTI), "white matter integrity", and "connectivity". The keyword analysis revealed that DTI has a critical role in detecting white matter microstructure integrity and that fractional anisotropy is the main parameter in the assessment process. Keyword burst detection identified four research hotspots: movement, distortion correction, voxelwise analysis, and fixel-based analysis. Conclusions: This bibliometric analysis provided a systematic understanding of the research on white matter microstructure and identified the current frontiers. This may help clinicians and researchers comprehensively identify hotspots and trends in this field.

20.
Front Neurosci ; 18: 1334508, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38379757

RESUMO

Objectives: The diverse nature of stroke necessitates individualized assessment, presenting challenges to case-control neuroimaging studies. The normative model, measuring deviations from a normal distribution, provides a solution. We aim to evaluate stroke-induced white matter microstructural abnormalities at group and individual levels and identify potential prognostic biomarkers. Methods: Forty-six basal ganglia stroke patients and 46 healthy controls were recruited. Diffusion-weighted imaging and clinical assessment were performed within 7 days after stroke. We used automated fiber quantification to characterize intergroup alterations of segmental diffusion properties along 20 fiber tracts. Then each patient was compared to normative reference (46 healthy participants) by Mahalanobis distance tractometry for 7 significant fiber tracts. Mahalanobis distance-based deviation loads (MaDDLs) and fused MaDDLmulti were extracted to quantify individual deviations. We also conducted correlation and logistic regression analyses to explore relationships between MaDDL metrics and functional outcomes. Results: Disrupted microstructural integrity was observed across the left corticospinal tract, bilateral inferior fronto-occipital fasciculus, left inferior longitudinal fasciculus, bilateral thalamic radiation, and right uncinate fasciculus. The correlation coefficients between MaDDL metrics and initial functional impairment ranged from 0.364 to 0.618 (p < 0.05), with the highest being MaDDLmulti. Furthermore, MaDDLmulti demonstrated a significant enhancement in predictive efficacy compared to MaDDL (integrated discrimination improvement [IDI] = 9.62%, p = 0.005) and FA (IDI = 34.04%, p < 0.001) of the left corticospinal tract. Conclusion: MaDDLmulti allows for assessing behavioral disorders and predicting prognosis, offering significant implications for personalized clinical decision-making and stroke recovery. Importantly, our method demonstrates prospects for widespread application in heterogeneous neurological diseases.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA