Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
Nano Lett ; 16(8): 4779-87, 2016 08 10.
Artigo em Inglês | MEDLINE | ID: mdl-27280476

RESUMO

Hydrogels composed of two-dimensional (2D) nanomaterials have become an important alternative to replace traditional inorganic scaffolds for tissue engineering. Here, we describe a novel nanocrystalline material with 2D morphology that was synthesized by tuning the crystallization of the sodium-magnesium-phosphate system. We discovered that the sodium ion can regulate the precipitation of magnesium phosphate by interacting with the crystal's surface causing a preferential crystal growth that results in 2D morphology. The 2D nanomaterial gave rise to a physical hydrogel that presented extreme thixotropy, injectability, biocompatibility, bioresorption, and long-term stability. The nanocrystalline material was characterized in vitro and in vivo and we discovered that it presented unique biological properties. Magnesium phosphate nanosheets accelerated bone healing and osseointegration by enhancing collagen formation, osteoblasts differentiation, and osteoclasts proliferation through up-regulation of COL1A1, RunX2, ALP, OCN, and OPN. In summary, the 2D magnesium phosphate nanosheets could bring a paradigm shift in the field of minimally invasive orthopedic and craniofacial interventions because it is the only material available that can be injected through high gauge needles into bone defects in order to accelerate bone healing and osseointegration.

2.
ACS Appl Mater Interfaces ; 9(33): 28027-28033, 2017 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-28770981

RESUMO

We present a study focused on characterizing the interaction forces between mica surfaces across solutions containing star-shaped polymers with cationic ends. Using the surface forces apparatus, we show that the interaction forces in pure water between surfaces covered with the polymers can be adequately described by the dendronized brush model. In that framework, our experimental data suggest that the number of branches adsorbed at the surface decreases as the concentration of polymer in the adsorbing solution increases. The onset of interaction was also shown to increase with the concentration of polymer in solution up to distances much larger than the contour length of the polymer, suggesting that the nanostructure of the polymer film is significantly different from that of a monolayer. High compression of the polymer film adsorbed at low polymer concentration revealed the appearance of a highly structured hydration layer underneath the polymer layer. These results support that charged polymer chains do not necessarily come into close contact with the surface even if strong electrostatic interaction is present. Altogether, our results provide a comprehensive understanding of the interfacial behavior of star-shaped polymers and reveal the unexpected role of hydration water in the control of the polymer conformation.

3.
Nanomaterials (Basel) ; 6(4)2016 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-28335197

RESUMO

Developing new functional biomaterials from biocompatible natural-based resources for gene/drug delivery has attracted increasing attention in recent years. In this work, we prepared a series of cationic nanoparticles (Diosarg-DOPE NPs) by assembly of a natural steroid diosgenin-based cationic lipid (Diosarg) with commercially-available helper lipid 1,2-dioleoyl-sn-glycero-3-phosphorethanolamine (DOPE). These cationic Diosarg-DOPE NPs were able to efficiently bind siRNA and plasmid DNA (pDNA) via electrostatic interactions to form stable, nano-sized cationic lipid nanoparticles instead of lamellar vesicles in aqueous solution. The average particle size, zeta potentials and morphologies of the siRNA and pDNA complexes of the Diosarg-DOPE NPs were examined. The in vitro cytotoxicity of NPs depends on the dose and assembly ratio of the Diosarg and DOPE. Notably, the intracellular transportation efficacy of the exogenesis siRNA and pDNA could be greatly improved by using the Diosarg-DOPE NPs as the cargoes in H1299 cell line. The results demonstrated that the self-assembled Diosarg-DOPE NPs could achieve much higher intracellular transport efficiency for siRNA or pDNA than the cationic lipid Diosarg, indicating that the synergetic effect of different functional lipid components may benefit the development of high efficiency nano-scaled gene carriers. Moreover, it could be noted that the traditional "lysosome localization" involved in the intracellular trafficking of the Diosarg and Diosarg-DOPE NPs, indicating the co-assembly of helper lipid DOPE, might not significantly affect the intracellular localization features of the cationic lipids.

4.
Biomaterials ; 37: 395-404, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25453967

RESUMO

Drug administration via buccal mucosa is an attractive drug delivery strategy due to good patient compliance, prolonged localized drug effect, and avoidance of gastrointestinal drug metabolism and first-pass elimination. Buccal drug delivery systems need to maintain an intimate contact with the mucosa lining in the wet conditions of the oral cavity for long enough to allow drug release and absorption. For decades, mucoadhesive polymers such as chitosan (CS) and its derivatives have been explored to achieve this. In this study, inspired by the excellent wet adhesion of marine mussel adhesive protein, we developed a buccal drug delivery system using a novel catechol-functionalized CS (Cat-CS) hydrogel. We covalently bonded catechol functional groups to the backbone of CS, and crosslinked the polymer with a non-toxic crosslinker genipin (GP). We achieved two degrees of catechol conjugation (9% and 19%), forming Cat9-CS/GP and Cat19-CS/GP hydrogels, respectively. We confirmed covalent bond formation during the catechol functionalization and GP crosslinking during the gel formation. The gelation time and the mechanical properties of Cat-CS hydrogels are similar to those of CS only hydrogels. Catechol groups significantly enhanced mucoadhesion in vitro (7 out of the 10 Cat19-CS hydrogels were still in contact with porcine mucosal membrane after 6 h, whereas all of the CS hydrogels lost contact after 1.5 h). The new hydrogel systems sustained the release of lidocaine for about 3 h. In-vivo, we compared buccal patches made of Cat19-CS/GP and CS/GP adhered to rabbit buccal mucosa. We were able to detect lidocaine in the rabbit's serum at concentration about 1 ng/ml only from the Cat19-CS patch, most likely due to the intimate contact provided by mucoadhesive Cat19-CS/GP systems. No inflammation was observed on the buccal tissue in contact with any of the patches tested. These results show that the proposed catechol-modified CS hydrogel is a promising mucoadhesive and biocompatible hydrogel system for buccal drug delivery.


Assuntos
Catecóis/farmacologia , Quitosana/química , Reagentes de Ligações Cruzadas/química , Sistemas de Liberação de Medicamentos , Hidrogéis/química , Iridoides/química , Mucosa Bucal/efeitos dos fármacos , Animais , Espectroscopia de Ressonância Magnética Nuclear de Carbono-13 , Catecóis/química , Difusão , Humanos , Estimativa de Kaplan-Meier , Masculino , Microscopia Eletrônica de Varredura , Coelhos , Reologia , Espectroscopia de Infravermelho com Transformada de Fourier , Sus scrofa
5.
J Mech Behav Biomed Mater ; 18: 100-7, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23262308

RESUMO

Elevated red blood cell (RBC) aggregation increases low-shear blood viscosity and is closely related to several pathophysiological diseases such as atherosclerosis, thrombosis, diabetes, hypertension, cancer, and hereditary chronic hemolytic conditions. Non-ionic linear polymers such as poly(ethylene glycol) (PEG) and Pluronic F68 have shown inhibitory effects against RBC aggregation. However, hypersensitivity reactions in some individuals, attributed to a diblock component of Pluronic F68, have been reported. Therefore, we investigated the use of an amphiphilic star-shaped PEG polymer based on a cholic acid core as a substitute for Pluronics to reduce RBC aggregation. Cholic acid is a natural bile acid produced in the human liver and therefore should assure biocompatibility. Cholic acid based PEG polymers, termed CA(PEG)(4), were synthesized by anionic polymerization. Size exclusion chromatography indicated narrow mass distributions and hydrodynamic radii less than 2 nm were calculated. The effects of CA(PEG)(4) on human RBC aggregation and blood viscosity were investigated and compared to linear PEGs by light transmission aggregometry. Results showed optimal reduction of RBC aggregation for molar masses between 10 and 16 kDa of star-shaped CA(PEG)(4) polymers. Cholic acid based PEG polymers affect the rheology of erythrocytes and may find applications as alternatives to linear PEG or Pluronics to improve blood fluidity.


Assuntos
Ácido Cólico/química , Agregação Eritrocítica/efeitos dos fármacos , Interações Hidrofóbicas e Hidrofílicas , Polietilenoglicóis/química , Polietilenoglicóis/farmacologia , Humanos , Polietilenoglicóis/síntese química , Reologia , Relação Estrutura-Atividade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA