Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 529
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 120(28): e2302142120, 2023 07 11.
Artigo em Inglês | MEDLINE | ID: mdl-37399399

RESUMO

Harnessing the programmable nature of DNA origami for controlling structural features in crystalline materials affords opportunities to bring crystal engineering to a remarkable level. However, the challenge of crystallizing a single type of DNA origami unit into varied structural outcomes remains, given the requirement for specific DNA designs for each targeted structure. Here, we show that crystals with distinct equilibrium phases and shapes can be realized using a single DNA origami morphology with an allosteric factor to modulate the binding coordination. As a result, origami crystals undergo phase transitions from a simple cubic lattice to a simple hexagonal (SH) lattice and eventually to a face-centered cubic (FCC) lattice. After selectively removing internal nanoparticles from DNA origami building blocks, the body-centered tetragonal and chalcopyrite lattice are derived from the SH and FCC lattices, respectively, revealing another phase transition involving crystal system conversions. The rich phase space was realized through the de novo synthesis of crystals under varying solution environments, followed by the individual characterizations of the resulting products. Such phase transitions can lead to associated transitions in the shape of the resulting products. Hexagonal prism crystals, crystals characterized by triangular facets, and twinned crystals are observed to form from SH and FCC systems, which have not previously been experimentally realized by DNA origami crystallization. These findings open a promising pathway toward accessing a rich phase space with a single type of building block and wielding other instructions as tools to develop crystalline materials with tunable properties.


Assuntos
Nanopartículas Metálicas , Nanoestruturas , Nanopartículas Metálicas/química , Magnésio , DNA/química , Cristalização , Transição de Fase , Nanotecnologia , Conformação de Ácido Nucleico , Nanoestruturas/química
2.
Anal Chem ; 96(21): 8754-8762, 2024 05 28.
Artigo em Inglês | MEDLINE | ID: mdl-38740024

RESUMO

Simultaneous profiling of redox-regulated markers at different cellular sublocations is of great significance for unraveling the upstream and downstream molecular mechanisms of oxidative stress in living cells. Herein, by synchronizing dual target-triggered DNA machineries in one nanoentity, we engineered a DNA walker-driven mass nanotag (MNT) assembly system (w-MNT-AS) that can be sequentially activated by oxidative stress-associated mucin 1 (MUC1) and apurinic/apyrimidinic endonuclease 1 (APE1) from plasma membrane to cytoplasm and induce recycled assembly of MNTs for multiplex detection of the two markers by matrix-assisted laser desorption ionization mass spectrometry (MALDI MS). In the working cascade, the sensing process governs the separate activation of w-MNT-AS by MUC1 and APE1 in diverse locations, while the assembly process contributes to the parallel amplification of the ion signal of the characteristic mass tags. In this manner, the differences between MCF-7, HeLa, HepG2, and L02 cells in membrane MUC1 expression and cytoplasmic APE1 activation were fully characterized. Furthermore, the oxidative stress level and dynamics caused by exogenous H2O2, doxorubicin, and simvastatin were comprehensively demonstrated by tracking the fate of the two markers across different cellular locations. The proposed w-MNT-AS coupled MS method provides an effective route to probe multiple functional molecules that lie at different locations while participating in the same cellular event, facilitating the mechanistic studies on cellular response to oxidative stress and other disease-related cellular processes.


Assuntos
DNA Liase (Sítios Apurínicos ou Apirimidínicos) , DNA , Mucina-1 , Estresse Oxidativo , Humanos , Mucina-1/metabolismo , DNA/metabolismo , DNA/química , DNA Liase (Sítios Apurínicos ou Apirimidínicos)/metabolismo , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Peróxido de Hidrogênio/metabolismo
3.
Anal Chem ; 96(21): 8837-8843, 2024 05 28.
Artigo em Inglês | MEDLINE | ID: mdl-38757510

RESUMO

Breast cancer poses the significance of early diagnosis and treatment. Here, we developed an innovative photoelectrochemical (PEC) immunosensor characterized by high-level dual photocurrent signals and exceptional sensitivity. The PEC sensor, denoted as MIL&Ag2S, was constructed by incorporating Ag2S into a metal-organic framework of MIL-101(Cr). This composite not only enhanced electron-hole separation and conductivity but also yielded robust and stable dual photocurrent signals. Through the implementation of signal switching, we achieved the combined detection of cancer antigen 15-3 (CA15-3) and carcinoembryonic antigen (CEA) with outstanding stability, reproducibility, and specificity. The results revealed a linear range for CEA detection spanning 0.01-32 ng/mL, with a remarkably low detection limit of 0.0023 ng/mL. Similarly, for CA15-3 detection, the linear range extended from 0.1 to 320 U/mL, with a low detection limit of 0.014 U/mL. The proposed strategy introduces new avenues for the development of highly efficient, cost-effective, and user-friendly PEC sensors. Furthermore, it holds promising prospects for early clinical diagnosis, contributing to potential breakthroughs in medical detection and ultimately improving patient outcomes.


Assuntos
Biomarcadores Tumorais , Neoplasias da Mama , Antígeno Carcinoembrionário , Técnicas Eletroquímicas , Estruturas Metalorgânicas , Mucina-1 , Compostos de Prata , Estruturas Metalorgânicas/química , Humanos , Neoplasias da Mama/diagnóstico , Antígeno Carcinoembrionário/sangue , Antígeno Carcinoembrionário/análise , Mucina-1/análise , Mucina-1/sangue , Biomarcadores Tumorais/sangue , Biomarcadores Tumorais/análise , Compostos de Prata/química , Imunoensaio/métodos , Técnicas Biossensoriais , Feminino , Limite de Detecção , Processos Fotoquímicos , Anticorpos Imobilizados/imunologia , Anticorpos Imobilizados/química
4.
Anal Chem ; 96(29): 11853-11861, 2024 07 23.
Artigo em Inglês | MEDLINE | ID: mdl-38989993

RESUMO

Cardiac myosin-binding protein C (cMyBP-C) is a novel cardiac marker of acute myocardial infarction (AMI) and acute cardiac injuries (ACI). Construction of point-of-care testing techniques capable of sensing cMyBP-C with high sensitivity and precision is urgently needed. Herein, we synthesized an Au@NGQDs@Au/Ag multi-shell nanoUrchins (MSNUs), and then applied it in a colorimetric/SERS dual-mode immunoassay for detection of cMyBP-C. The MSNUs displayed superior stability, colorimetric brightness, and SERS enhancement ability with an enhanced factor of 5.4 × 109, which were beneficial to improve the detection capability of test strips. The developed MSNU-based test strips can achieve an ultrasensitive immunochromatographic assay of cMyBP-C in both colorimetric and SERS modes with the limits of detection as low as 19.3 and 0.77 pg/mL, respectively. Strikingly, this strip was successfully applied to analyze actual plasma samples with significantly better sensitivity, negative predictive value, and accuracy than commercially available gold test strips. Notably, this method possessed a wide range of application scenarios via combining with a color recognizer application named Color Grab on the smartphone, which can meet various needs of different users. Overall, our MSNU-based test strip as a mobile health monitoring tool shows excellent sensitivity, reproducibility, and rapid detection of the cMyBP-C, which holds great potential for the early clinic diagnosis of AMI and ACI.


Assuntos
Proteínas de Transporte , Ouro , Humanos , Imunoensaio/métodos , Proteínas de Transporte/sangue , Ouro/química , Limite de Detecção , Colorimetria/métodos , Nanopartículas Metálicas/química , Infarto do Miocárdio/diagnóstico , Infarto do Miocárdio/sangue , Análise Espectral Raman/métodos
5.
Small ; 20(6): e2306291, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37775937

RESUMO

The traditional tris(bipyridine)ruthenium(II) complex suffers from the notorious aggregation-caused quenching effect, which greatly compromises its electrochemiluminescence (ECL) efficiency, thus hindering further applications in biosensing and clinical diagnosis. Here, the ultrathin tetraphenylethylene-active tris(bipyridine)ruthenium(II) derivative nanosheets (abbreviated as Ru-TPE NSs) are synthesized through a protein-assisted self-assembly strategy for ultrasensitive ECL detection of human telomerase RNA (hTR) for the first time. The synthesized Ru-TPE NSs exhibit the aggregation-induced enhanced ECL behavior and excellent water-dispersion. Surprisingly, up to a 106.5-fold increase in the ECL efficiency of Ru-TPE NSs is demonstrated compared with the dispersed molecules in an organic solution. The restriction of intramolecular motions is confirmed to be responsible for the significant ECL enhancement. Therefore, this proposed ECL biosensor shows high sensitivity and excellent selectivity for hTR based on Ru-TPE NSs as efficient ECL beacons and the catalytic hairpin assembly as signal amplification, whose detection limit is as low as 8.0 fm, which is far superior to the previously reported works. Here, a promising analytical method is provided for early clinical diagnosis and a new type of efficient ECL emitters with great application prospects is represented.


Assuntos
Técnicas Biossensoriais , Rutênio , Telomerase , Humanos , Técnicas Eletroquímicas/métodos , Medições Luminescentes/métodos , RNA , Técnicas Biossensoriais/métodos
6.
Analyst ; 149(19): 4881-4888, 2024 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-39143943

RESUMO

Strategies based on nanomaterials for sterilization address the problem of antibiotic resistance faced by conventional antimicrobials, with the contribution of photocatalytic compounds being particularly prominent. Herein, to integrate multiple bactericidal techniques into a system for generating synergistic antibacterial effects, a novel photo-triggered AuAg@g-C3N4 composite nanoplatform was constructed by anchoring AuAg on the surface of a g-C3N4 layer. As the composite nanoplatform had a lower bandgap and superior visible light utilization efficiency, it could facilitate free electron transfer better and exhibit superior photocatalytic activity under light conditions. Moreover, the AuAg@g-C3N4 composite nanoplatform integrated the bactericidal modes of silver ion toxicity, physical disruption of bacterial cell membranes by the multilayer structure, and excellent photocatalytic activity, exhibiting extremely superior bactericidal effects against Escherichia coli, Staphylococcus aureus, Pseudomonas aeruginosa and Bacillus subtilis, with a bactericidal efficiency of up to 100%.


Assuntos
Antibacterianos , Ouro , Prata , Antibacterianos/farmacologia , Antibacterianos/química , Prata/química , Prata/farmacologia , Ouro/química , Ouro/farmacologia , Luz , Compostos de Nitrogênio/química , Compostos de Nitrogênio/efeitos da radiação , Compostos de Nitrogênio/farmacologia , Compostos de Nitrogênio/toxicidade , Grafite/química , Grafite/efeitos da radiação , Grafite/farmacologia , Testes de Sensibilidade Microbiana , Catálise , Nitrilas/química , Nitrilas/farmacologia , Nanopartículas Metálicas/química , Escherichia coli/efeitos dos fármacos , Staphylococcus aureus/efeitos dos fármacos , Processos Fotoquímicos , Bacillus subtilis/efeitos dos fármacos , Pseudomonas aeruginosa/efeitos dos fármacos
7.
Environ Sci Technol ; 2024 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-39283956

RESUMO

The sewer system, despite being a significant source of methane emissions, has often been overlooked in current greenhouse gas inventories due to the limited availability of quantitative data. Direct monitoring in sewers can be expensive or biased due to access limitations and internal heterogeneity of sewer networks. Fortunately, since methane is almost exclusively biogenic in sewers, we demonstrate in this study that the methanogenic potential can be estimated using known sewer microbiome data. By combining data mining techniques and bioinformatics databases, we developed the first data-driven method to analyze methanogenic potentials using a data set containing 633 observations of 53 variables obtained from literature mining. The methanogenic potential in the sewer sediment was around 250-870% higher than that in the wet biofilm on the pipe and sewage water. Additionally, k-means clustering and principal component analysis linked higher methane emission rates (9.72 ± 51.3 kgCO2 eq m-3 d-1) with smaller pipe size, higher water level, and higher potentials of sulfate reduction in the wetted pipe biofilm. These findings exhibit the possibility of connecting microbiome data with biogenic greenhouse gases, further offering insights into new approaches for understanding greenhouse gas emissions from understudied sources.

8.
Environ Sci Technol ; 58(23): 10128-10139, 2024 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-38743597

RESUMO

Pervaporation (PV) is an effective membrane separation process for organic dehydration, recovery, and upgrading. However, it is crucial to improve membrane materials beyond the current permeability-selectivity trade-off. In this research, we introduce machine learning (ML) models to identify high-potential polymers, greatly improving the efficiency and reducing cost compared to conventional trial-and-error approach. We utilized the largest PV data set to date and incorporated polymer fingerprints and features, including membrane structure, operating conditions, and solute properties. Dimensionality reduction, missing data treatment, seed randomness, and data leakage management were employed to ensure model robustness. The optimized LightGBM models achieved RMSE of 0.447 and 0.360 for separation factor and total flux, respectively (logarithmic scale). Screening approximately 1 million hypothetical polymers with ML models resulted in identifying polymers with a predicted permeation separation index >30 and synthetic accessibility score <3.7 for acetic acid extraction. This study demonstrates the promise of ML to accelerate tailored membrane designs.


Assuntos
Aprendizado de Máquina , Polímeros , Polímeros/química , Membranas Artificiais , Permeabilidade
9.
Chem Biodivers ; 21(6): e202400086, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38619074

RESUMO

The endoperoxide group of artemisinins is universally accepted an essential group for their anti-cancer effects. In this study, a series of D-ring-contracted artemisinin derivatives were constructed by combining ring-contracted artemisinin core with fragments of functional heterocyclic molecules or classical CDK4/6 inhibitors to identify more efficacious breast cancer treatment agents. Twenty-six novel hybridized molecules were synthesized and characterized by HRMS, IR, 1H-NMR and 13C NMR. In antiproliferative activities and kinase inhibitory effects assays, we found that the antiproliferative effects of B01 were close to those of the positive control Palbociclib, with GI50 values of 4.87±0.23 µM and 9.97±1.44 µM towards T47D cells and MDA-MB-436 cells respectively. In addition, the results showed that B01 was the most potent compound against CDK6/cyclin D3 kinase, with an IC50 value of 0.135±0.041 µM, and its activity was approximately 1/3 of the positive control Palbociclib.


Assuntos
Antineoplásicos , Artemisininas , Neoplasias da Mama , Proliferação de Células , Quinase 4 Dependente de Ciclina , Quinase 6 Dependente de Ciclina , Ensaios de Seleção de Medicamentos Antitumorais , Inibidores de Proteínas Quinases , Humanos , Quinase 6 Dependente de Ciclina/antagonistas & inibidores , Quinase 6 Dependente de Ciclina/metabolismo , Artemisininas/farmacologia , Artemisininas/química , Artemisininas/síntese química , Quinase 4 Dependente de Ciclina/antagonistas & inibidores , Quinase 4 Dependente de Ciclina/metabolismo , Antineoplásicos/farmacologia , Antineoplásicos/síntese química , Antineoplásicos/química , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/síntese química , Inibidores de Proteínas Quinases/química , Proliferação de Células/efeitos dos fármacos , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/patologia , Neoplasias da Mama/metabolismo , Relação Estrutura-Atividade , Linhagem Celular Tumoral , Estrutura Molecular , Feminino , Relação Dose-Resposta a Droga , Simulação de Acoplamento Molecular
10.
Nano Lett ; 23(5): 1820-1829, 2023 03 08.
Artigo em Inglês | MEDLINE | ID: mdl-36790360

RESUMO

Multiplexed profiling of RNAs aids in a comprehensive understanding of multiparameter-defined cellular processes and pathological states. We herein present a mass nanotags-enabled interfacial assembly system (MNTs-AS) with parallel amplification motors for simultaneous assaying of multiple RNAs in biosystems by matrix-assisted laser desorption/ionization mass spectrometry (MALDI MS). Four kinds of MNTs encoding corresponding RNA can be cyclically assembled on magnetic beads by target-triggered catalytic hairpin assembly (CHA) machineries on nanointerfaces, generating multiplexed and amplified characteristic ion signals assigned to target RNAs upon MALDI MS interrogation. By virtue of high sensitivity and multiplexing capability, the MNTs-AS-based MS assay allows precision subtyping of diverse breast cancer cells and their exosomes by multiplexed profiling of miRNA-21, miRNA-373, miRNA-155, and manganese superoxide dismutase mRNA via a single MS inquiry. This method provides a promising tool for unraveling multiple RNA-involved biological events in fundamental research and distinguishing different cancer subtypes in clinical practice.


Assuntos
MicroRNAs , RNA Mensageiro , MicroRNAs/genética
11.
Nano Lett ; 23(10): 4201-4208, 2023 05 24.
Artigo em Inglês | MEDLINE | ID: mdl-37188354

RESUMO

Understanding of DNA-mediated charge transport (CT) is significant for exploring circuits at the molecular scale. However, the fabrication of robust DNA wires remains challenging due to the persistence length and natural flexibility of DNA molecules. Moreover, CT regulation in DNA wires often relies on predesigned sequences, which limit their application and scalability. Here, we addressed these issues by preparing self-assembled DNA nanowires with lengths of 30-120 nm using structural DNA nanotechnology. We employed these nanowires to plug individual gold nanoparticles into a circuit and measured the transport current in nanowires with an optical imaging technique. Contrary to the reported cases with shallow or no length dependence, a fair current attenuation was observed with increasing nanowire length, which experimentally confirmed the prediction of the incoherent hopping model. We also reported a mechanism for the reversible CT regulation in DNA nanowires, which involves dynamic transitions in the steric conformation.


Assuntos
Nanopartículas Metálicas , Nanofios , Nanofios/química , Ouro/química , Nanotecnologia/métodos , DNA/química
12.
Angew Chem Int Ed Engl ; 63(4): e202313446, 2024 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-38038595

RESUMO

Encoded nanostructures afford an ideal platform carrying multi-channel signal components for multiplexed assay and information security. However, with the demand on exclusivity and reproducibility of coding signals, precise control on the structure and composition of nanomaterials featuring fully distinguishable signals remains challenging. By using the multiplexing capability of mass spectrometry (MS) and spatial addressability of DNA origami nanostructures, we herein propose a quality control methodology for constructing mass-encoded nanodevices (namely MNTs-TDOFs) in the scaffold of compartmented tetrahedral DNA origami frames (TDOFs), in which the arrangement and stoichiometry of four types of mass nanotags (MNTs) can be finely regulated and customized to generate characteristic MS patterns. The programmability of combinatorial MNTs and orthogonality of individual compartments allows further evolution of MNTs-TDOFs to static tagging agents and dynamic nanoprobes for labeling and sensing of multiple targets. More importantly, structure control at single TDOF level ensures the constancy of prescribed MS outputs, by which a high-capacity coding system was established for secure information encryption and decryption. In addition to the multiplexed outputs in parallel, the nanodevices could also map logic circuits with interconnected complexity and logic events of c-Met recognition and dimerization on cell surface for signaling regulation by MS interrogation.


Assuntos
DNA , Nanoestruturas , Reprodutibilidade dos Testes , DNA/química , Nanoestruturas/química , Lógica , Nanotecnologia/métodos
13.
Angew Chem Int Ed Engl ; : e202415323, 2024 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-39381917

RESUMO

Proteolysis-targeting chimeras (PROTACs) have accelerated drug development; however, some challenges still exist owing to their lack of tumor selectivity and on-demand protein degradation. Here, we developed a miRNA-initiated assembled pre-PROTAC (miRiaTAC) platform that enables the on-demand activation and termination of target degradation in a cell type-specific manner. Using miRNA-21 as a model, we engineered DNA hairpins labeled with JQ-1 and pomalidomide and facilitated the modular assembly of DNA-encoded pre-PROTACs through a hybridization chain reaction. This configuration promoted the selective polyubiquitination and degradation of BRD4 upon miR-21 initiation, highlighting significant tumor selectivity and minimal systemic toxicity. Furthermore, the platform incorporates photolabile groups, enabling the precise optical control of pre-PROTACs during DNA assembly/disassembly, mitigating the risk of excessive protein degradation. Additionally, by introducing a secondary ligand targeting CDK6, these pre-PROTACs were used as a modular scaffold for the programmable assembly of active miRiaTACs containing two different warheads in exact stoichiometry, enabling orthogonal multitarget degradation. The integration of near-infrared light-mediated photodynamic therapy through an upconversion nanosystem further enhanced the efficacy of the platform with potent in vivo anticancer activity. We anticipate that miRiaTAC represents a significant intersection between dynamic DNA nanotechnology and PROTAC, potentially expanding the versatility of PROTAC toolkit for cancer therapy.

14.
Angew Chem Int Ed Engl ; : e202416011, 2024 Oct 22.
Artigo em Inglês | MEDLINE | ID: mdl-39439277

RESUMO

The fabrication of high-performance microbial fuel cells requires the evaluation of the activity of electrochemically active bacteria. However, this is challenging because of the time-consuming nature of biofilm formation and the invasive nature of labeling. To address this issue, we developed a fast, label-free, single-cell Raman spectroscopic method. This method involves investigating the "pure" linear Stark effect of endogenous CO in the silent region of biological samples, which allows for probing the intrinsic electric field in the outer-membrane cytochromes of live bacterial cells. We found that reduced outer-membrane cytochromes can generate an additional intrinsic electric field equivalent to an applied potential of +0.29 V. We also found that the higher the electrical activity of the cell, the larger the generated electric field. This was also reflected in the output current of the constructed microbial fuel cells. Raman spectroscopy was employed to facilitate the assessment of electrochemical activity at the single-cell level in highly-diluted bacterial samples. After analysis, inactive bacteria were ablated by laser heating, and 20 active cells were cultured for further testing. The rapid and high-throughput probing of the intrinsic electric field offers a promising platform for high-efficiency screening of electrochemically active bacterial cells for bioenergetic and photosynthetic research.

15.
J Am Chem Soc ; 145(49): 26557-26568, 2023 12 13.
Artigo em Inglês | MEDLINE | ID: mdl-38039555

RESUMO

Delivery of CRISPR/Cas9 ribonucleoproteins (RNPs) offers a powerful tool for therapeutic genome editing. However, precise manipulation of CRISPR/Cas9 RNPs to switch the machinery on and off according to diverse disease microenvironments remains challenging. Here, we present dual-chain-locked DNA origami nanocages (DL-DONCs) that can confine Cas9 RNPs in the inner cavity for efficient cargo delivery and dual-marker-responsive genome editing in the specified pathological states. By engineering of ATP or miRNA-21-responsive dsDNAs as chain locks on the DONCs, the permeability of nanocages and accessibility of encapsulated Cas9 RNPs can be finely regulated. The resulting DL-DONCs enabled steric protection of bioactive Cas9 RNPs from premature release and deactivation during transportation while dismounting the dual chain locks in response to molecular triggers after internalization into tumor cells, facilitating the escape of Cas9 RNPs from the confinement for gene editing. Due to the dual-marker-dominated uncaging mechanism, the gene editing efficiency could be exclusively determined by the combined level of ATP and miRNA-21 in the target cellular environment. By targeting the tumor-associated PLK-1 gene, the DL-DONCs-enveloped Cas9 RNPs have demonstrated superior inhibitory effects on the proliferation of tumor cells in vitro and in vivo. The developed DL-DONCs provide a custom-made platform for the precise manipulation of Cas9 RNPs, which can be potentially applied to on-demand gene editing for classified therapy in response to arbitrary disease-associated biomolecules.


Assuntos
Sistemas CRISPR-Cas , MicroRNAs , Ribonucleoproteínas , DNA , Trifosfato de Adenosina
16.
Anal Chem ; 95(9): 4317-4324, 2023 03 07.
Artigo em Inglês | MEDLINE | ID: mdl-36826784

RESUMO

Non-enzymatic nucleic acid catalytic systems based on branch migration have been developed, with applications ranging from biological sensing to molecular computation. A scalable planetary cross-catalytic (PCC) system is built up in this work by cross-cascading three planetary catalytic hairpin assembly (CHA) reactions with a central three-arm-branched CHA reaction. With the bottom-up hierarchy strategy, we designed four levels of catalytic reactions, simple CHA reactions, two-layered linear cascades, conventional one-planetary PCC reactions, and two- and three-planetary PCC reactions, and examined the reaction products and intermediates in each level via native polyacrylamide gel electrophoresis. The gel shift assay optimized the designs of hairpin strands to keep the leaking reactions at a manageable level and protect against signal attenuation during serial signal transduction in nucleic acid circuits. The reaction kinetics, measured via fluorescence, are strongly dependent on the number of planetary reactions. As a result, the three-planetary PCC system achieved an exponential amplification factor of about 3k, while the conventional one-planetary cross-catalytic system has an amplification factor of 2k (k represents the cycling number). Finally, we demonstrated the rapid detection of a cancer biomarker, microRNA141, used as the catalyst in a two-planetary PCC system. We envision that the PCC systems could be applied in biological signal transduction, biocomputing, rapid detection of single- and multi-target nucleic acid probes, etc.


Assuntos
Técnicas Biossensoriais , MicroRNAs , Técnicas Biossensoriais/métodos , Sondas de Ácido Nucleico , Espectrometria de Fluorescência/métodos , Catálise , Técnicas de Amplificação de Ácido Nucleico/métodos , Limite de Detecção , MicroRNAs/análise
17.
Anal Chem ; 95(39): 14736-14745, 2023 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-37737121

RESUMO

Easy-to-use, reliable, and real-time methods for detecting heavy metal ion contamination are urgently required, which is a primary concern for water pollution control and human health. However, present methods for this aim are still unable to achieve simultaneous multianalysis for complex real sample detection. Herein, an intellectualized vision-based single-nanoparticle Raman imaging strategy combined with ion-responsive functional nucleic acids (FNAs) was proposed to address these issues. We reported a correspondence between the concentration of the analytes and the density of particles (DOP) of specifically captured nanoparticles to achieve sensitive detection and simultaneous multianalysis of heavy metal ions. The specific detection of Pb2+ (Hg2+) was obtained with a detection linear range from 100 pM to 100 nM (from 500 fM to 100 nM) and limit of detections low to 1 pM (100 fM), with the advantages of good specificity, excellent homogeneity, and reproducibility. Furthermore, the differentiation of different heavy metal ions (Pb2+/Hg2+) was achieved, i.e., the simultaneous multianalysis, based on Raman imaging of the single particle and intelligent machine vision method. Finally, the Raman imaging assay was utilized for real sample analysis, and it provided a powerful and reliable tool for detecting trace Pb2+/Hg2+ in real water samples and facilitated the portable on-site monitoring of heavy metal ions.

18.
Anal Chem ; 2023 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-36629754

RESUMO

Programmed cell death (PCD) is a precisely controlled physiological process to sustain tissue homeostasis. Even though the PCD pathways have been explicitly subdivided, the individual cell death process seems to synergistically operate to eliminate cells rather than separately execute signal transduction. Apoptosis is the dominant intracellular PCD subtype, which is intimately regulated and controlled by mitochondria, thus tracing mitochondrial actions could reveal the dynamic changes of apoptosis, which may provide important tools for screening preclinical therapeutic agents. Herein, we exploited an innovative fluorophore Cy496 based on the light-initiated cleavage reaction. Cy496 bears the typical D-π-A structure and serves as a versatile building block for chemosensor construction through flexible side chains. By regulating lipophilicity and basicity through bis-site substitution, we synthesized a series of fluorescence probes and screened a novel mitochondria-targeted ratiometric probe Cy1321, which can real-time evaluate the dynamic changes of mitochondrial micropolarity mediated by bis-cholesterol anchoring. Cy1321 has realized two-color quantification and real-time visualization of polarity fluctuations on chemotherapy agent (cisplatin)-induced apoptosis through flow cytometry and confocal imaging and also achieved the purpose of detecting mitochondria-related apoptosis at the level of tissues. It is envisioned that Cy1321 has sufficient capability as a promising and facile tool for the evaluation of apoptosis and contributing to therapeutic drug screening.

19.
Anal Chem ; 95(23): 9034-9042, 2023 06 13.
Artigo em Inglês | MEDLINE | ID: mdl-37265009

RESUMO

Since the formation of a DNA duplex plays a vital role in gene expression and regulation across all kinds of organisms, quantifying the interaction during DNA hybridization is essential for understanding various biological processes in living systems on the molecular scale of nucleic acids. Here, we developed a label-free method to measure the binding kinetics and affinity of DNA hybridization with an electro-optical modulation on the individual gold nanorods based on a total internal reflection dark-field imaging microscopy. Under the electrochemical modulation, a Fourier transform filter was utilized to extract the optical scattering of the nanorods, which varies with the DNA binding due to their impedance change. We validated the imaging principle and established an analytical model to monitor the optical response during the DNA hybridization. Using the presented platform, we measured the binding kinetics and affinities of different DNA pairs and demonstrated its capability to distinguish the DNA hybridization with only single-base mismatch, which may provide guidance to explore the etiology and pathogenesis of diseases associated with single point gene mutations. Furthermore, the method allows for simultaneous imaging of multiple nanoparticles, thus enabling a high-throughput detection and opening possibilities for the study of the interfacial heterogeneity.


Assuntos
Nanopartículas Metálicas , Ácidos Nucleicos , Cinética , Hibridização de Ácido Nucleico , DNA/química , Nanopartículas Metálicas/química , Ouro/química
20.
Anal Chem ; 95(40): 14914-14924, 2023 10 10.
Artigo em Inglês | MEDLINE | ID: mdl-37769195

RESUMO

Credible and on-site detection of organophosphorus pesticides (OPs) in complex matrixes is significant for food security and environmental monitoring. Herein, a novel COF/methylene blue@MnO2 (COF/MB@MnO2) composite featured abundant signal loading, a specific recognition unit, and robust oxidase-like activity was successfully prepared through facile assembly processes. The multifunctional composite acted as a homogeneous electrochemical and photothermal dual-mode sensing platform for OPs detection through stimuli-responsive regulation. Without the presence of OPs, the surface MnO2 coating could recognize thiocholine (TCh), originating from acetylcholinesterase (AChE)-catalyzed hydrolysis of acetylthiocholine (ATCh), and exhibited a distinctly amplified diffusion current due to the release of plentiful MB; while the residual MnO2 nanosheets could only catalyze less TMB into oxidized TMB (oxTMB) with a typical near-infrared (NIR) absorption, enabling NIR-driven photothermal assay with a low temperature using a portable thermometer. Based on the inhibitory effect of OPs on AChE activity and OP-regulated generation of TCh, chlorpyrifos as a model target can be accurately detected with a low limit of detection of 0.0632 and 0.108 ng/mL by complementary electrochemical and photothermal measurements, respectively. The present dual-mode sensor was demonstrated to be excellent for application to the reliable detection of OPs in complex environmental and food samples. This work can not only provide a complementary dual-mode method for convenient and on-site detection of OPs in different scenarios but also expand the application scope of the COF-based multifunctional composite in multimodal sensors.


Assuntos
Técnicas Biossensoriais , Praguicidas , Compostos Organofosforados , Acetilcolinesterase , Azul de Metileno , Compostos de Manganês , Óxidos , Técnicas Biossensoriais/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA