Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 120
Filtrar
Mais filtros

País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Mol Cell ; 83(8): 1197-1199, 2023 04 20.
Artigo em Inglês | MEDLINE | ID: mdl-37084709

RESUMO

We talk to the Ji lab about their paper, "RNA Pol II preferentially regulates ribosomal protein expression by trapping disassociated subunits" (in this issue), lessons from their scientific journey so far, and what inspires them along their scientific paths.


Assuntos
RNA Polimerase II , Ribossomos , RNA Polimerase II/metabolismo , Ribossomos/metabolismo , Transcrição Gênica
2.
Mol Cell ; 83(8): 1280-1297.e11, 2023 04 20.
Artigo em Inglês | MEDLINE | ID: mdl-36924766

RESUMO

RNA polymerase II (RNA Pol II) has been recognized as a passively regulated multi-subunit holoenzyme. However, the extent to which RNA Pol II subunits might be important beyond the RNA Pol II complex remains unclear. Here, fractions containing disassociated RPB3 (dRPB3) were identified by size exclusion chromatography in various cells. Through a unique strategy, i.e., "specific degradation of disassociated subunits (SDDS)," we demonstrated that dRPB3 functions as a regulatory component of RNA Pol II to enable the preferential control of 3' end processing of ribosomal protein genes directly through its N-terminal domain. Machine learning analysis of large-scale genomic features revealed that the little elongation complex (LEC) helps to specialize the functions of dRPB3. Mechanistically, dRPB3 facilitates CBC-PCF11 axis activity to increase the efficiency of 3' end processing. Furthermore, RPB3 is dynamically regulated during development and diseases. These findings suggest that RNA Pol II gains specific regulatory functions by trapping disassociated subunits in mammalian cells.


Assuntos
RNA Polimerase II , Transcrição Gênica , Animais , RNA Polimerase II/metabolismo , Proteínas Ribossômicas/genética , Proteínas Ribossômicas/metabolismo , Ribossomos/metabolismo , Subunidades Proteicas/genética , Mamíferos/metabolismo
3.
Mol Cell ; 82(20): 3943-3959.e11, 2022 10 20.
Artigo em Inglês | MEDLINE | ID: mdl-36113479

RESUMO

RNA polymerase II (RNA Pol II) subunits are thought to be involved in various transcription-associated processes, but it is unclear whether they play different regulatory roles in modulating gene expression. Here, we performed nascent and mature transcript sequencing after the acute degradation of 12 mammalian RNA Pol II subunits and profiled their genomic binding sites and protein interactomes to dissect their molecular functions. We found that RNA Pol II subunits contribute differently to RNA Pol II cellular localization and transcription processes and preferentially regulate RNA processing (such as RNA splicing and 3' end maturation). Genes sensitive to the depletion of different RNA Pol II subunits tend to be involved in diverse biological functions and show different RNA half-lives. Sequences, associated protein factors, and RNA structures are correlated with RNA Pol II subunit-mediated differential gene expression. These findings collectively suggest that the heterogeneity of RNA Pol II and different genes appear to depend on some of the subunits.


Assuntos
RNA Polimerase II , Splicing de RNA , Animais , RNA Polimerase II/metabolismo , Proteólise , Processamento Pós-Transcricional do RNA , RNA/metabolismo , Transcrição Gênica , Mamíferos/metabolismo
4.
Nucleic Acids Res ; 2024 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-38842922

RESUMO

RNA polymerase II drives mRNA gene expression, yet our understanding of Pol II degradation is limited. Using auxin-inducible degron, we degraded Pol II's RPB1 subunit, resulting in global repression. Surprisingly, certain genes exhibited increased RNA levels post-degradation. These genes are associated with GPCR ligand binding and are characterized by being less paused and comprising polycomb-bound short genes. RPB1 degradation globally increased KDM6B binding, which was insufficient to explain specific gene activation. In contrast, RPB2 degradation repressed nearly all genes, accompanied by decreased H3K9me3 and SUV39H1 occupancy. We observed a specific increase in serine 2 phosphorylated Pol II and RNA stability for RPB1 degradation-upregulated genes. Additionally, α-amanitin or UV treatment resulted in RPB1 degradation and global gene repression, unveiling subsets of upregulated genes. Our findings highlight the activated transcription elongation and increased RNA stability of signaling genes as potential mechanisms for mammalian cells to counter RPB1 degradation during stress.

5.
J Org Chem ; 89(5): 3441-3452, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38377488

RESUMO

We reported an efficient three-component reaction to access new spiro heterocycles through the annulation reactions of isatins, substituted ureas, and cyclic ketones under normal laboratory conditions, which is another example of isatins being used to build spiro compounds by the ring-opening and recyclization processes. The wide range of substrates, simple operation, normal experimental conditions, and high yields make the approach of high practical value.

6.
Nature ; 563(7729): 94-99, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30349002

RESUMO

Materials research has driven the development of modern nano-electronic devices. In particular, research in magnetic thin films has revolutionized the development of spintronic devices1,2 because identifying new magnetic materials is key to better device performance and design. Van der Waals crystals retain their chemical stability and structural integrity down to the monolayer and, being atomically thin, are readily tuned by various kinds of gate modulation3,4. Recent experiments have demonstrated that it is possible to obtain two-dimensional ferromagnetic order in insulating Cr2Ge2Te6 (ref. 5) and CrI3 (ref. 6) at low temperatures. Here we develop a device fabrication technique and isolate monolayers from the layered metallic magnet Fe3GeTe2 to study magnetotransport. We find that the itinerant ferromagnetism persists in Fe3GeTe2 down to the monolayer with an out-of-plane magnetocrystalline anisotropy. The ferromagnetic transition temperature, Tc, is suppressed relative to the bulk Tc of 205 kelvin in pristine Fe3GeTe2 thin flakes. An ionic gate, however, raises Tc to room temperature, much higher than the bulk Tc. The gate-tunable room-temperature ferromagnetism in two-dimensional Fe3GeTe2 opens up opportunities for potential voltage-controlled magnetoelectronics7-11 based on atomically thin van der Waals crystals.

7.
Mikrochim Acta ; 191(5): 296, 2024 05 03.
Artigo em Inglês | MEDLINE | ID: mdl-38702534

RESUMO

A covalent organic framework-based strategy was designed for label-free colorimetric detection of pesticides. Covalent organic framework-based nanoenzyme with excellent oxidase-like catalytic activity was synthesized. Unlike other artificial enzymes, porphyrin-based covalent organic framework (p-COF) as the oxidase mimic showed highly catalytic chromogenic activity and good affinity toward TMB without the presence of H2O2, which can be used as substitute for peroxidase mimics and H2O2 system in the colorimetric reaction. Based on the fact that the pesticide-aptamer complex can inhibit the oxidase activity of p-COF and reduced the absorbance at 650 nm in UV-Vis spectrum, a label-free and facile colorimetric detection of pesticides was designed and fabricated. Under the optimized conditions, the COF-based colorimetric probe for pesticide detection displayed high sensitivity and selectivity. Taking fipronil for example the limit of detection was 2.7 ng/mL and the linear range was 5 -500,000 ng/mL. The strategy was successfully applied to the detection of pesticides with good recovery , which was in accordance with that of HPLC-MS/MS. The COF-based colorimetric detection was free of complicated modification H2O2, which guaranteed the accuracy and reliability of measurements. The COF-based sensing strategy is a potential candidate for the sensitive detection of pesticides of interests.


Assuntos
Colorimetria , Limite de Detecção , Estruturas Metalorgânicas , Praguicidas , Porfirinas , Colorimetria/métodos , Praguicidas/análise , Estruturas Metalorgânicas/química , Porfirinas/química , Peróxido de Hidrogênio/química , Oxirredutases/química , Aptâmeros de Nucleotídeos/química
8.
Dev Biol ; 490: 53-65, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35853502

RESUMO

Mammalian KMT2C, KMT2D, and HCFC1 are expressed during heart development and have been associated with congenital heart disease, but their roles in heart development remain elusive. We found that the Drosophila Lpt and trr genes encode the N-terminal and C-terminal homologs, respectively, of mammalian KMT2C or KMT2D. Lpt and trr mutant embryos showed reduced cardiac progenitor cells. Silencing of Lpt, trr, or both simultaneously in the heart led to similar abnormal cardiac morphology, tissue fibrosis, and cardiac functional defects. Like KMT2D, Lpt and trr were found to modulate histone H3K4 mono- and dimethylation, but not trimethylation. Investigation of downstream genes regulated by mouse KMT2D in the heart showed that their fly homologs are similarly regulated by Lpt or trr in the fly heart, suggesting that Lpt and trr regulate an evolutionarily conserved transcriptional network for heart development. Moreover, we showed that cardiac silencing of Hcf, the fly homolog of mammalian HCFC1, leads to heart defects similar to those observed in Lpt and trr silencing, as well as reduced H3K4 monomethylation. Our findings suggest that Lpt and trr function together to execute the conserved function of mammalian KMT2C and KMT2D in histone H3 lysine K4 mono- and dimethylation required for heart development. Possibly aided by Hcf, which we show plays a related role in H3K4 methylation during fly heart development.


Assuntos
Proteínas de Drosophila , Histona-Lisina N-Metiltransferase , Histonas , Coativadores de Receptor Nuclear , Animais , Drosophila/genética , Drosophila/metabolismo , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Histona-Lisina N-Metiltransferase/genética , Histona-Lisina N-Metiltransferase/metabolismo , Histonas/metabolismo , Metilação , Camundongos , Coativadores de Receptor Nuclear/genética , Coativadores de Receptor Nuclear/metabolismo
9.
Phys Chem Chem Phys ; 25(12): 8843-8852, 2023 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-36916321

RESUMO

Topological magnetism in quasi-1D systems can be interesting because of the significant quantum confinement. However, the realization is missing. In this letter, we propose the use of 3× periodicities related edge reconstructions of MoS2 zigzag edges to construct a topological quasi-1D spin chain. Specifically, a trimer Su-Schrieffer-Heeger model can be applied to illustrate the topological and spin order when the inter-cell hopping integral is larger than the intra-cell ones. As a result, topological ferromagnetic order is achieved for S-oriented edge states magnetized by V atoms and confirmed by first-principles calculations and Wannier functions analysis. Finally, gap opening and spin-polarized end states are realized.

10.
Int J Mol Sci ; 24(24)2023 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-38139143

RESUMO

Highly evolutionarily conserved multiprotein complexes termed Complex of Proteins Associated with Set1 (COMPASS) are required for histone 3 lysine 4 (H3K4) methylation. Drosophila Set1, Trx, and Trr form the core subunits of these complexes. We show that flies deficient in any of these three subunits demonstrated high lethality at eclosion (emergence of adult flies from their pupal cases) and significantly shortened lifespans for the adults that did emerge. Silencing Set1, trx, or trr in the heart led to a reduction in H3K4 monomethylation (H3K4me1) and dimethylation (H3K4me2), reflecting their distinct roles in H3K4 methylation. Furthermore, we studied the gene expression patterns regulated by Set1, Trx, and Trr. Each of the COMPASS core subunits controls the methylation of different sets of genes, with many metabolic pathways active early in development and throughout, while muscle and heart differentiation processes were methylated during later stages of development. Taken together, our findings demonstrate the roles of COMPASS series complex core subunits Set1, Trx, and Trr in regulating histone methylation during heart development and, given their implication in congenital heart diseases, inform research on heart disease.


Assuntos
Proteínas de Drosophila , Epigênese Genética , Animais , Drosophila/metabolismo , Drosophila melanogaster/metabolismo , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Histona-Lisina N-Metiltransferase/genética , Histona-Lisina N-Metiltransferase/metabolismo , Histonas/metabolismo , Coração/crescimento & desenvolvimento
11.
Molecules ; 29(1)2023 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-38202625

RESUMO

Laportea bulbifera (Sieb. et Zucc.) Wedd. (L. bulbifera) is a significant plant in the Laportea genus. Traditionally, it has been used in ethnomedicine for treating various conditions such as rheumatic arthralgia, fractures, falling injuries, nephritis dropsy, limb numbness, pruritus, fatigue-induced internal imbalances, and irregular menstruation. Modern pharmacological studies have confirmed its therapeutic potential, including anti-inflammatory, immunosuppressive, analgesic, and anti-rheumatoid arthritis properties. To gather comprehensive information on L. bulbifera, a thorough literature search was conducted using databases like Web of Science, PubMed, ProQuest, and CNKI. This review aims to provide a comprehensive understanding of L. bulbifera, covering various aspects such as ethnomedicinal uses, geographical distribution, botanical description, phytochemistry, pharmacology, and quality control. The goal is to establish a solid foundation and propose new research avenues for exploring and developing potential applications of L. bulbifera. So far, a total of one hundred and eighty-nine compounds have been isolated and identified from L. bulbifera, including flavonoids, phenolics, nitrogen compounds, steroids, terpenoids, coumarins, phenylpropanoids, fatty acids and their derivatives, and other compounds. Notably, flavonoids and fatty acids have demonstrated remarkable antioxidant and anti-inflammatory properties. Additionally, these compounds show promising potential in activities such as analgesia, hypoglycemia, and hypolipidemia, as well as toxicity. Despite extensive fundamental studies on L. bulbifera, further research is still needed to enhance our understanding of its mechanism of action and improve quality control. This requires more comprehensive investigations to explore the specific material basis, uncover new mechanisms of action, and refine quality control methods related to L. bulbifera. By doing so, we could contribute to the further development and utilization of this plant.


Assuntos
Medicina Tradicional , Urticaceae , Anti-Inflamatórios não Esteroides , Ácidos Graxos , Flavonoides
12.
Molecules ; 28(17)2023 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-37687084

RESUMO

Laportea bulbifera (Sieb. et Zucc.) Wedd., a plant with a long history of medicinal use, possesses uncertainly defined medicament portions while its antioxidant capacity remains largely unexplored. To gain a better understanding of its medicinal value, this study focused on investigating the Laportea bulbifera aboveground part (LBAP) and the Laportea bulbifera root (LBR). Through an assessment of the bioactive compound content, a significant finding emerged: the LBR exhibited notably higher levels of these bioactive phytochemicals compared to the LBAP. This observation was further reinforced by the antioxidant assays, which demonstrated the superiority of the LBR's antioxidant capacity. The experimental results unequivocally indicate that the root is the optimal medicament portion for Laportea bulbifera. Furthermore, it was discovered that the presence of alcohol in the extraction solvent significantly enhanced the extraction of active ingredients, with the methanol extract of LBR performing the best among the extracts tested. Consequently, this extract was selected for further research. Leveraging cutting-edge UHPLC-ESI-Q-TOF-MS technology, the methanol extract of LBR was meticulously analyzed, revealing the presence of 41 compounds, primarily belonging to the phenolics and fatty acids. Remarkably, stability experiments demonstrated that the phenolics in the methanol extract maintained their stability across various pH values and during in vitro simulations of the human digestive system, albeit showing gradual degradation under high temperatures. Furthermore, the oxidative stability tests conducted on oils revealed the potential of the methanol extract as a stabilizer for olive oil and sunflower oil. Moreover, oral acute toxicity studies confirmed the low toxicity of the methanol extract, further supporting its safe use for medicinal purposes. Of particular note, histopathological examination and biochemical analysis affirmed the remarkable protective effects of the methanol extract against d-galactosamine-induced liver damage. These findings underscore the therapeutic potential of the methanol extract from the LBR in the treatment of diseases associated with oxidative imbalance.


Assuntos
Antioxidantes , Urticaceae , Humanos , Animais , Ratos , Antioxidantes/farmacologia , Metanol , Solventes , Bioensaio , Etanol , Fenóis/farmacologia
13.
Molecules ; 28(18)2023 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-37764339

RESUMO

Eleutherococcus sessiliflorus (Rupr. & Maxim.) S.Y.Hu (E. sessiliflorus), a member of the Araliaceae family, is a valuable plant widely used for medicinal and dietary purposes. The tender shoots of E. sessiliflorus are commonly consumed as a staple wild vegetable. The fruits of E. sessiliflorus, known for their rich flavor, play a crucial role in the production of beverages and fruit wines. The root barks of E. sessiliflorus are renowned for their therapeutic effects, including dispelling wind and dampness, strengthening tendons and bones, promoting blood circulation, and removing stasis. To compile a comprehensive collection of information on E. sessiliflorus, extensive searches were conducted in databases such as Web of Science, PubMed, ProQuest, and CNKI. This review aims to provide a detailed exposition of E. sessiliflorus from various perspectives, including phytochemistry and pharmacological effects, to lay a solid foundation for further investigations into its potential uses. Moreover, this review aims to introduce innovative ideas for the rational utilization of E. sessiliflorus resources and the efficient development of related products. To date, a total of 314 compounds have been isolated and identified from E. sessiliflorus, encompassing terpenoids, phenylpropanoids, flavonoids, volatile oils, organic acids and their esters, nitrogenous compounds, quinones, phenolics, and carbohydrates. Among these, triterpenoids and phenylpropanoids are the primary bioactive components, with E. sessiliflorus containing unique 3,4-seco-lupane triterpenoids. These compounds have demonstrated promising properties such as anti-oxidative stress, anti-aging, antiplatelet aggregation, and antitumor effects. Additionally, they show potential in improving glucose metabolism, cardiovascular systems, and immune systems. Despite some existing basic research on E. sessiliflorus, further investigations are required to enhance our understanding of its mechanisms of action, quality assessment, and formulation studies. A more comprehensive investigation into E. sessiliflorus is warranted to delve deeper into its mechanisms of action and potentially expand its pharmaceutical resources, thus facilitating its development and utilization.


Assuntos
Eleutherococcus , Triterpenos , Eleutherococcus/química , Extratos Vegetais/química , Triterpenos/química , Frutas/química , Ésteres/análise , Compostos Fitoquímicos/análise , Etnofarmacologia
14.
Molecules ; 28(13)2023 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-37446834

RESUMO

Euphorbia fischeriana has a long-standing history of use in traditional medicine for the treatment of tuberculosis diseases. However, the plant's therapeutic potential extends beyond this specific ailment. The present study aimed to investigate the antioxidant properties of Euphorbia fischeriana and lay the groundwork for further research on its potential therapeutic applications. Phytochemical tests were performed on the plant, and 11 types of phytochemicals were identified. Ultraviolet-visible spectrophotometry was used to evaluate the active components and antioxidant properties of eight different solvent extracts, ultimately selecting acetone extract for further research. UHPLC-ESI-Q-TOF-MS identified 43 compounds in the acetone extract, and chemical calculations were used to isolate those with high content and antioxidant activity. Three stability experiments confirmed the extract's stability, while cell viability and oral acute toxicity studies demonstrated its relatively low toxicity. In rats, the acetone extract showed significant protective effects against D-galactosamine-induced liver damage through histopathological examination and biochemical analysis. These results suggest that Euphorbia fischeriana's acetone extract has potential in treating diseases related to oxidative imbalances. Therefore, this study highlights the plant's potential therapeutic applications while providing insight into its antioxidant properties.


Assuntos
Antioxidantes , Euphorbia , Ratos , Animais , Antioxidantes/farmacologia , Antioxidantes/química , Extratos Vegetais/química , Euphorbia/química , Acetona , Compostos Fitoquímicos/farmacologia
15.
Phys Chem Chem Phys ; 24(5): 3420-3428, 2022 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-35073394

RESUMO

γ-CsPbI3 solar cells have achieved promising efficiencies, yet the quantitative understanding of their defect properties is limited due to the severe computational challenges when using hybrid functionals. We have discovered an algorithm to improve the convergence speed through a combination of structural relaxation with a strongly constrained and appropriately normed (SCAN) Meta-generalized-gradient approximation (Meta-GGA) functional and further ionic and electronic calculations with the Heyd-Scuseria-Ernzerhof (HSE) hybrid functional. The static HSE calculations with SCAN results as inputs are qualitatively reliable in defect calculations, different from one-ionic step HSE calculations based on GGA inputs. Contradictory to previous GGA defect results, a suppressed bipolar conductivity by p-type VCs and VPb, and n-type CsI is found. Additionally, stable bipolar defects Iint and CsPb, with features of strong bond orbital coupling or structural deformation, detrimentally serve as carrier-traps. This strengthened bond orbital coupling in γ-CsPbI3 causes more defect charge states than organic perovskites with larger lattice constants.

16.
J Basic Microbiol ; 62(5): 623-633, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35411947

RESUMO

Fusarium sp. C39 is an endophytic fungus of Dioscorea nipponica Makino. Symbiosis of Fusarium sp. C39 with Rhizoma Dioscoreae Nipponicae (RDN) can significantly increase the content of saponin, which provides a new approach for saponin production and reduces the pressure on natural sources of saponins. However, the underlying mechanism is not clear, limiting its application. In this study, the genome of Fusarium sp. C39 was sequenced, the gene functions were predicted via gene annotation, and the genome was compared to the genomes of four related species. Fusarium sp. C39 is predicted to encode many key enzyme genes involved in saponin synthesis, which could transform the mevalonate, isopentenyl pyrophosphate, and various intermediate compounds present in the RDN extract into saponins. The Fusarium sp. C39 genome contains specific genes that are conducive to its endophytic lifestyle and can provide abundant raw materials for saponin synthesis. Based on the genomic analysis, we proposed the mechanism by which Fusarium sp. C39 generates saponins and provides a theoretical basis for rapid, efficient, low-cost production of saponins.


Assuntos
Dioscorea , Fusarium , Saponinas , Biotransformação , Fungos/genética , Fusarium/genética , Glicolipídeos
17.
Int Wound J ; 19(6): 1518-1527, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35318821

RESUMO

The purpose of this study was to compare the reconstructive outcomes of soft-tissue defects around the foot and ankle with anterolateral thigh (ALT) flap or lateral supramalleolar (LSM) flap and attempt to provide an optimal strategy for elderly patients. A retrospective review of all continuous patients with foot and ankle reconstruction using different flaps from October of 2010 and October of 2020 was performed. Based on the flap types, the patients were divided into two groups: ALT flap group (n = 50) and LSM flap group (n = 46). Outcomes were assessed according to the flap survival rate, early complications, general complications, late complications, cosmetic appearance, functional outcomes and Vancouver Scar Scale (VSS). We found that there was no difference in average age, gender, aetiology, size of the defect, debridement times between the two groups; however, a significant difference in operation time, hospitalisation time and cost were noted between them. What's more, the early flap complications between them were not significantly different. The LSM flap group showed less general complications, less flap bulky and lower cosmetic appearance. Moreover, the functional evaluation and VSS seem similar (P > .05). Thus, The ALT flap and LSM flap are both flaps available for foot and ankle reconstruction in elderly patients. However, the LSM flap offers short operation time, short hospitalisation time, and less cost with a lower frequency of postoperative complications. Thus, we advocate the LSM flap for the reconstruction of moderate-size defects of the foot and ankle region in elderly patients.


Assuntos
Traumatismos do Tornozelo , Retalho Perfurante , Procedimentos de Cirurgia Plástica , Lesões dos Tecidos Moles , Idoso , Tornozelo/cirurgia , Humanos , Retalho Perfurante/cirurgia , Estudos Retrospectivos , Lesões dos Tecidos Moles/cirurgia , Coxa da Perna/cirurgia , Resultado do Tratamento
18.
BMC Microbiol ; 21(1): 18, 2021 01 08.
Artigo em Inglês | MEDLINE | ID: mdl-33419388

RESUMO

BACKGROUND: Continuous cropping of ginseng (Panax ginseng Meyer) cultivated in farmland for an extended period gives rise to soil-borne disease. The change in soil microbial composition is a major cause of soil-borne diseases and an obstacle to continuous cropping. The impact of cultivation modes and ages on the diversity and composition of the P. ginseng rhizosphere microbial community and technology suitable for cropping P. ginseng in farmland are still being explored. METHODS: Amplicon sequencing of bacterial 16S rRNA genes and fungal ITS regions were analyzed for microbial community composition and diversity. RESULTS: The obtained sequencing data were reasonable for estimating soil microbial diversity. We observed significant variations in richness, diversity, and relative abundances of microbial taxa between farmland, deforestation field, and different cultivation years. The bacterial communities of LCK (forest soil where P. ginseng was not grown) had a much higher richness and diversity than those in NCK (farmland soil where P. ginseng was not grown). The increase in cultivation years of P. ginseng in farmland and deforestation field significantly changed the diversity of soil microbial communities. In addition, the accumulation of P. ginseng soil-borne pathogens (Monographella cucumerina, Ilyonectria mors-panacis, I. robusta, Fusarium solani, and Nectria ramulariae) varied with the cropping age of P. ginseng. CONCLUSION: Soil microbial diversity and function were significantly poorer in farmland than in the deforestation field and were affected by P. ginseng planting years. The abundance of common soil-borne pathogens of P. ginseng increased with the cultivation age and led to an imbalance in the microbial community.


Assuntos
Bactérias/classificação , Fungos/classificação , Panax/crescimento & desenvolvimento , Análise de Sequência de DNA/métodos , Agricultura , Bactérias/genética , Bactérias/crescimento & desenvolvimento , Bactérias/isolamento & purificação , DNA Bacteriano/genética , DNA Fúngico/genética , Fungos/crescimento & desenvolvimento , Fungos/isolamento & purificação , Panax/microbiologia , Filogenia , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/microbiologia , RNA Ribossômico 16S/genética , Rizosfera , Microbiologia do Solo
19.
Phys Chem Chem Phys ; 23(5): 3511-3518, 2021 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-33514978

RESUMO

Cu2ZnSnS4 (CZTS) is a promising 3rd generation solar cell absorber based on earth-abundant and nontoxic elements. However, the formation of detrimental MoS2 in the Mo/CZTS back contact interface hinders the overall performance due to poor band alignment in the back contact and a degraded interface. We propose that graphene can be a suitable candidate for the protective interlayer at the back contact to prevent the formation of amorphous MoS2 by blocking S diffusion. Using first principles calculations, we investigated the kinetics processes of S atom diffusion on and across the graphene plane with various defects considered. It was found that while an S atom can easily diffuse on graphene with a diffusion barrier of 0.355 eV, it is hard to diffuse across the graphene plane with or without defects, with diffusion barriers ranging from 1.19 eV through a double vacancy to 8.66 eV across pristine graphene. In addition, a band offset calculation using a local potential alignment method was performed to understand the role of graphene in hole transport. We discover that the interpolation of Hartree potential data can largely improve the stability of the band offset algorithm, comparable to a core level alignment method. The band offset calculation results show that the Fermi level of graphene is 0.664 eV higher than the valence band maximum of CZTS. Therefore, graphene is a benign interlayer in the back contact that can facilitate hole collection. Our calculations suggest that graphene is a promising protective interlayer.

20.
Mediators Inflamm ; 2021: 9951946, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34475805

RESUMO

OBJECTIVES: Dendrobium catenatum Lindl. (DH) is a Chinese herbal medicine, which is often used to make tea to improve immunity in China. Rumor has it that DH has a protective effect against cardiovascular disease. However, it is not clear how DH can prevent cardiovascular disease, such as atherosclerosis (AS). Therefore, the purpose of this study is to study whether DH can prevent AS and the underlying mechanisms. METHODS: Zebrafish larvae were fed with high-cholesterol diet (HCD) to establish a zebrafish AS model. Then, we used DH water extracts (DHWE) to pretreat AS zebrafish. The plaque formation was detected by HE, EVG, and oil red O staining. Neutrophil and macrophage counts were calculated to evaluate the inflammation level. Reactive oxygen species (ROS) activity, malondialdehyde (MDA) content, and superoxide dismutase (SOD) activity in zebrafish were measured to reflect oxidative stress. The cholesterol accumulation and the levels of lipid, triglyceride (TG), and total cholesterol (TC) were measured to reflect lipid metabolism disorder. Then, parallel flow chamber was utilized to establish a low shear stress- (LSS-) induced endothelial cell (EC) dysfunction model. EA.hy926 cells were exposed to LSS (3 dyn/cm2) for 30 min and treated with DHWE. The levels of ROS, SOD, MDA, glutathione (GSH), and glutathiol (GSSG) in EA.hy926 cells were analysed to determine oxidative stress. The release of nitric oxide (NO), endothelin-1 (ET-1), and epoprostenol (PGI2) in EA.hy926 cells was measured to reflect EC dysfunction. The mRNA expression of intercellular adhesion molecule-1 (ICAM-1) and vascular cell adhesion molecule-1 (VCAM-1) in EA.hy926 cells was detected to reflect EC dysfunction inflammation. RESULTS: The results showed that DHWE significantly reduced cholesterol accumulation and macrophage infiltration in early AS. Finally, DHWE significantly alleviate the lipid metabolism disorder, oxidative stress, and inflammation to reduce the plaque formation of AS zebrafish larval model. Meanwhile, we also found that DHWE significantly improved LSS-induced EC dysfunction and oxidative stress in vitro. CONCLUSION: Our results indicate that DHWE could be used as a prevention method to prevent AS.


Assuntos
Aterosclerose/tratamento farmacológico , Dendrobium/metabolismo , Coração/embriologia , Água/química , Peixe-Zebra/embriologia , Animais , Linhagem Celular , Colesterol na Dieta , Medicamentos de Ervas Chinesas , Endotelina-1/biossíntese , Epoprostenol/metabolismo , Humanos , Inflamação , Molécula 1 de Adesão Intercelular/biossíntese , Óxido Nítrico/metabolismo , Estresse Oxidativo , Espécies Reativas de Oxigênio , Resistência ao Cisalhamento , Estresse Mecânico , Triglicerídeos/sangue , Veias Umbilicais/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA