Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Cell Mol Med ; 26(22): 5690-5701, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36282897

RESUMO

Autoimmune hepatitis (AIH) is a progressive and chronic inflammatory disease in the liver. MARCO is a surface receptor of macrophage involving in tissue inflammation and immune disorders. Moreover, polyguanine (PolyG) is considered to bind to macrophage receptor with collagenous structure (MARCO). However, the role of MARCO and PolyG in the development and treatment of AIH still remains unclear. Therefore, this study explores the expression of MARCO and therapeutic activity of PolyG in both S100-induced AIH in mouse and Lipopolysaccharide (LPS)-treated macrophage (RAW264.7 cells). Moreover, there were significant increases in inflammatory factors and MARCO, as well as decrease in I-kappa-B-alpha (Ik-B) in the liver of AIH mice and LPS-induced cells. However, PolyG treatment significantly reversed the elevation of inflammatory cytokins, MARCO and reduction of Ik-B. In addition, PolyG treatment could downregulate the expression of Toll-like receptor 4 (TLR4) and TIR-domain-containing adaptor inducing interferon-ß (TRIF), decrease macrophage M1 polarization and increase macrophage M2 polarization. When hepatocytes were co-cultured with different treatment of macrophages, similar expression profile of inflammatory cytokines was observed in hepatocytes. The research revealed that MARCO expression was elevated in AIH mice. PolyG treatment and inhibition of MARCO significantly reduced inflammatory cytokines expression in the liver as well as hepatocytes and macrophages. Therefore, MARCO could be a target for the treatment of AIH.


Assuntos
Hepatite Autoimune , Receptor 4 Toll-Like , Camundongos , Animais , Receptor 4 Toll-Like/metabolismo , NF-kappa B/metabolismo , Lipopolissacarídeos/farmacologia , Hepatite Autoimune/tratamento farmacológico , Macrófagos/metabolismo , Citocinas/metabolismo , Proteínas Adaptadoras de Transporte Vesicular/genética , Proteínas Adaptadoras de Transporte Vesicular/metabolismo
2.
Toxicol Appl Pharmacol ; 434: 115795, 2022 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-34780724

RESUMO

A chronic liver disease named autoimmune hepatitis (AIH) will carry elevated levels of inflammatory cytokines, but there is currently no effective treatment to cure it. Histone deacetylase 3 (HDAC3) takes an important position in regulating the expression of inflammatory genes. Nimbolide (NIB) is a limonoid extracted from the neem tree (Azadirachta indica) that has been found to be effective against many diseases, including cancer, scleroderma, and acute respiratory distress syndrome. Here, we investigated the protective effect of nimbolide on AIH liver. Mice and AML12 cells were employed to establish AIH model with liver antigen S100 and cell injury model of LPS, and then treated with different concentrations of nimbolide. After the successful establishment of the animal model and cell model, inflammatory cytokines of IL-1ß, IL-6 and TNF-α as well as cellular signaling related to inflammation such as STAT3, IκB-α and NF-κB were examined. We observed for the first time about nimbolide can effectively inhibit inflammation in AIH mice's liver and AML12 cells by inhibiting HDAC3 expression. HDAC3 knocked down by siRNA in cells can also effectively alleviate the inflammation in AML12 cells, further confirming that HDAC3 plays an important role in the inflammation of liver cells. These results suggest nimbolide could be a potential new treatment for autoimmune hepatitis, and HDAC3 may become a new target for autoimmune hepatitis.


Assuntos
Regulação Enzimológica da Expressão Gênica/efeitos dos fármacos , Hepatite Autoimune/tratamento farmacológico , Histona Desacetilases/metabolismo , Inflamação/tratamento farmacológico , Limoninas/farmacologia , Animais , Linhagem Celular , Citocinas/genética , Citocinas/metabolismo , Técnicas de Silenciamento de Genes , Histona Desacetilases/genética , Lipopolissacarídeos/toxicidade , Fígado/efeitos dos fármacos , Fígado/enzimologia , Camundongos , Camundongos Endogâmicos C57BL , Fator de Transcrição STAT3/genética , Fator de Transcrição STAT3/metabolismo
3.
Oxid Med Cell Longev ; 2021: 6551069, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34966478

RESUMO

Autoimmune hepatitis (AIH) is an inflammatory autoimmune disease of the liver. Oxidative stress triggered by reactive oxygen radicals is a common pathophysiological basis for the pathogenesis of many liver diseases, and ferroptosis is associated with the toxic accumulation of reactive oxygen species. The signaling transduction pathways responsible for iron processing and lipid-peroxidation mechanisms are believed to drive ferroptosis. However, the specific mechanisms regulating ferroptosis remain unclear. The aims of this investigation were to identify the possible effector functions of ferroptosis, based on glutathione peroxidase 4 (GPX4) regulation in an S100-induced autoimmune hepatitis mouse model and hepatocyte injury models. The S100 liver antigen-induced AIH mouse model was used to detect ferroptotic biomarkers using western blotting. Upregulated levels of cyclooxygenase2 (COX2) and Acyl-Coenzyme A synthase long-chain family member 4 (ACSL4) were observed in the S100-induced AIH model group, while levels of GPX4 and ferritin heavy chain 1 (FTH1) were downregulated (P < 0.05). The expression profiles of COX2, ACSL4, GPX4, and FTH1 were restored following the administration of ferrostatin-1. In addition, Nrf2 and HO-1 levels in the S100-induced AIH model mice after treatment with ferrostatin-1 were downregulated compared to the nonferrostatin-1-treated S100-induced AIH model mice (P < 0.05). Moreover, COX2 and ACSL4 levels were significantly upregulated, with significant FTH1 downregulation, in the AIH model mice when liver-specific GPX4 was silenced using AAV8 constructs. These data indicate that inhibition of ferroptosis significantly ameliorated the influence of AIH on the Nuclear factor E2-related factor 2 (Nrf2)/Heme oxygenase-1 (HO-1) signaling pathway, and that ferroptosis may act as an initiator or intermediate mediator leading to AIH.


Assuntos
Ferroptose/genética , Hepatite Autoimune/genética , Fator 2 Relacionado a NF-E2/metabolismo , Fosfolipídeo Hidroperóxido Glutationa Peroxidase/metabolismo , Animais , Modelos Animais de Doenças , Humanos , Masculino , Camundongos , Transdução de Sinais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA