Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Assunto principal
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Mikrochim Acta ; 187(4): 205, 2020 03 09.
Artigo em Inglês | MEDLINE | ID: mdl-32152683

RESUMO

A triangular gold nanoplate (AuNPL)-based colorimetric assay is presented for ultrasensitive determination of cupric ions (Cu2+) and mercuric ions (Hg2+) in sequence. AuNPLs were found to be etched efficiently when producing triiodide ions (I3-) by a redox reaction between Cu2+ and iodide ions (I-), leading to a change of the shape of AuNPLs from triangular to sphere along with a color change from blue to pink. In the presence of Hg2+ the etching of AuNPLs was suppressed due to the consumption of I- by the formation of HgI2. With an increase of the concentration of the Hg2+ a transformation from sphere to triangular in the shape of AuNPLs occurred with a color change from pink to blue. The evolution of AuNPLs from etching to anti-etching state by sequential addition of Cu2+ and Hg2+ was accompanied with color variations and band shifts of localized surface plasmon resonance (LSPR), allowing for visual and spectroscopic determination of Cu2+ and Hg2+ successively within 15 min. In the range 0.01-1.5 µM for Cu2+ and 0.02-3.0 µM for Hg2+, the linear relationship between the band shift values and the target ions concentration was found good (R2 > 0.996). The limit of detections (3S/k) was 19 nM for Cu2+ and 9 nM for Hg2+, respectively. The lowest visual estimation concentration was 80 nM for both Cu2+ and Hg2+ through the distinguishable color changes. This system exhibited desirable selectivity for Cu2+ and Hg2+ over other common ions tested. The method has been successfully applied to sequential determination of Cu2+ and Hg2+ in real water and food samples. Graphical abstract Scheme 1 Schematic illustration for sequential detection of Cu2+ and Hg2+ based on etching of AuNPLs.

2.
Chem Asian J ; 17(17): e202200564, 2022 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-35763343

RESUMO

Cyclic polyamine/ethers embedded with anthraquinone moieties and functional pendants, are structural analogues of crown ethers and (oxo-) cyclams, and could be utilized as sensitive and selective chemosensors towards metal cations. Those pseudo- (similar but geometrically distinct) crown and lariat ethers show various cation-binding patterns and stoichiometry, being modulated by donor type, cavity size and pendants' chelating ability. The luminescent and chromogenic properties also differ a lot along with the derivation of the parental macrocycle. Methodological designing including synthesis and post-functionalization through nucleophilic substitution, Mannich condensation etc., as well as the sensing performance of those pseudo-crown and lariat ethers are summarized in this review, basing on the spectroscopic, voltammetric and X-ray crystallographic determinations. Anion effect in sensing cations is evaluated according to the ion-pair recognition theory. Those results shed some light on exemplifying the anions' role in bioinorganic systems including metalloenzymes.


Assuntos
Éteres de Coroa , Antraquinonas , Cátions , Corantes , Éteres de Coroa/química , Análise Espectral
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA