Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
1.
J Cell Physiol ; 2024 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-38888012

RESUMO

Sepsis is a systemic inflammatory reaction caused by infection, and severe sepsis can develop into septic shock, eventually leading to multiorgan dysfunction and even death. In recent years, studies have shown that mitochondrial damage is closely related to the occurrence and development of sepsis. Recent years have seen a surge in concern over mitochondrial DNA (mtDNA), as anomalies in this material can lead to cellular dysfunction, disruption of aerobic respiration, and even death of the cell. In this review, we discuss the latest findings on the mechanisms of mitochondrial damage and the molecular mechanisms controlling mitochondrial mtDNA release. We also explored the connection between mtDNA misplacement and inflammatory activation. Additionally, we propose potential therapeutic targets of mtDNA for sepsis treatment.

2.
Curr Oncol Rep ; 24(11): 1501-1511, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-35763189

RESUMO

PURPOSE OF REVIEW: The stress response to surgery is essential for maintaining homeostasis and exhibits anti-tumor effects; however, an ongoing and exaggerated stress response may have adverse clinical consequences and even promote cancer progression. This review will discuss the complex relationship between surgical stress and cancer progression. RECENT FINDINGS: Surgical stress exhibits both anti-tumor and cancer-promoting effects by causing changes in the neuroendocrine, circulatory, and immune systems. Many studies have found that many mechanisms are involved in the process, and the corresponding targets could be applied for cancer therapy. Although surgical stress may have anti-tumor effects, it is necessary to inhibit an excessive stress response, mostly showing cancer-promoting effects.


Assuntos
Neoplasias , Humanos , Neoplasias/patologia , Sistema Imunitário
3.
J Clin Med ; 13(5)2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-38592032

RESUMO

Background: Sepsis is a major cause of ICU admissions, with high mortality and morbidity. The lungs are particularly vulnerable to infection and injury, and restoration of vascular endothelial homeostasis after injury is a crucial determinant of outcome. Neutrophil extracellular trap (NET) release strongly correlates with the severity of lung tissue damage. However, little is known about whether NETs affect endothelial cell (EC) regeneration and repair. Methods: Eight- to ten-week-old male C57BL/6 mice were injected intraperitoneally with a sublethal dose of LPS to induce acute lung inflammatory injury or with PBS as a control. Blood samples and lung tissues were collected to detect NET formation and lung endothelial cell proliferation. Human umbilical vein endothelial cells (HUVECs) were used to determine the role of NETs in cell cycle progression in vitro. Results: Increased NET formation and impaired endothelial cell proliferation were observed in mice with inflammatory lung injury following septic endotoxemia. Degradation of NETs with DNase I attenuated lung inflammation and facilitated endothelial regeneration. Mechanistically, NETs induced p21 upregulation and cell cycle stasis to impair endothelial repair. Conclusions: Our findings suggest that NET formation impairs endothelial regeneration and vascular repair through the induction of p21 and cell cycle arrest during inflammatory lung injury.

4.
Cell Death Discov ; 10(1): 216, 2024 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-38704372

RESUMO

Renal ischemia‒reperfusion injury (IRI) is one of the main causes of acute kidney injury (AKI), which is a potentially life-threatening condition with a high mortality rate. IRI is a complex process involving multiple underlying mechanisms and pathways of cell injury and dysfunction. Additionally, various types of cell death have been linked to IRI, including necroptosis, apoptosis, pyroptosis, and ferroptosis. These processes operate differently and to varying degrees in different patients, but each plays a role in the various pathological conditions of AKI. Advances in understanding the underlying pathophysiology will lead to the development of new therapeutic approaches that hold promise for improving outcomes for patients with AKI. This review provides an overview of the recent research on the molecular mechanisms and pathways underlying IRI-AKI, with a focus on regulated cell death (RCD) forms such as necroptosis, pyroptosis, and ferroptosis. Overall, targeting RCD shows promise as a potential approach to treating IRI-AKI.

5.
Brain Sci ; 13(1)2023 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-36672106

RESUMO

BACKGROUND: The neuroinflammation of the central nervous system (CNS) is a prevalent syndrome of brain dysfunction secondary to severe sepsis and is regulated by microglia. Triggering the receptor expressed on myeloid cells 2 (TREM2) is known to have protective functions that modulate the microglial polarization of M2 type to reduce inflammatory responses, thereby improving cognition. METHODS: We examined the effect of TREM2 on the polarization state of microglia during the progression of neuroinflammation. After consecutive intraperitoneal injections of lipopolysaccharide for 7 days, we evaluated the inflammation of a septic mice model by hematoxylin-eosin (H&E) and electron microscopy, and we used immunofluorescence (IF) assays and Western blotting to visualize hippocampal sections in C57BL/6 mice to assess TREM2 expression. In addition, we analyzed the state of microglia polarization with quantitative RT-PCR. RESULT: The consecutive injection of LPS for 4 days elevated systemic inflammation and caused behavioral cognitive dysfunction in the septic model. However, on Day 7, the neuroinflammation was considerably attenuated. Meanwhile, TREM2 decreased on Day 4 and increased on Day 7 in vivo. Consistently, LPS could reduce the expression of TREM2 while IFN-ß enhanced TREM2 expression in vitro. TREM2 regulated the microglial M1 phenotype's conversion to the M2 phenotype. CONCLUSION: Our aim in this study was to investigate the interconnection between microglia polarization and TREM2 in neuroinflammation. Our results suggested that IFN-ß could modulate TREM2 expression to alter the polarization state of microglia, thereby reducing LPS-induced neuroinflammation. Therefore, TREM2 is a novel potential therapeutic target for neuroinflammation.

6.
Eur J Med Res ; 28(1): 45, 2023 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-36694233

RESUMO

Acute kidney injury (AKI) is a common and serious complication of cardiac surgery and is associated with increased mortality and morbidity, accompanied by a substantial economic burden. The pathogenesis of cardiac surgery-associated acute kidney injury (CSA-AKI) is multifactorial and complex, with a variety of pathophysiological theories. In addition to the existing diagnostic criteria, the exploration and validation of biomarkers is the focus of research in the field of CSA-AKI diagnosis. Prevention remains the key to the management of CSA-AKI, and common strategies include maintenance of renal perfusion, individualized blood pressure targets, balanced fluid management, goal-directed oxygen delivery, and avoidance of nephrotoxins. This article reviews the pathogenesis, definition and diagnosis, and pharmacological and nonpharmacological prevention strategies of AKI in cardiac surgical patients.


Assuntos
Injúria Renal Aguda , Procedimentos Cirúrgicos Cardíacos , Humanos , Injúria Renal Aguda/diagnóstico , Injúria Renal Aguda/etiologia , Injúria Renal Aguda/prevenção & controle , Rim , Procedimentos Cirúrgicos Cardíacos/efeitos adversos , Biomarcadores , Coração , Complicações Pós-Operatórias/diagnóstico , Complicações Pós-Operatórias/etiologia , Complicações Pós-Operatórias/prevenção & controle , Fatores de Risco
7.
Cell Death Discov ; 9(1): 315, 2023 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-37626060

RESUMO

Neutrophil extracellular traps (NETs) are involved in the activation and dysfunction of multiple overlapping and interacting pathways, including the immune response to injury, inflammation, and coagulation, which contribute to the pathogenesis of sepsis-induced acute lung injury (SI-ALI). However, how NETs mediate the relationship between inflammation and coagulation has not been fully clarified. Here, we found that NETs, through stimulator of interferon genes (STING) activation, induced endothelial cell damage with abundant production of tissue factor (TF), which magnified the dysregulation between inflammatory and coagulant responses and resulted in poor prognosis of SI-ALI model mice. Disruption of NETs and inhibition of STING improved the outcomes of septic mice and reduced the inflammatory response and coagulation. Furthermore, Toll-like receptor 2 (TLR2) on the surface of endothelial cells was involved in the interaction between NETs and the STING pathway. Collectively, these findings demonstrate that NETs activate the coagulant cascade in endothelial cells in a STING-dependent manner in the development of SI-ALI.

8.
Shock ; 57(6): 161-171, 2022 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-35759299

RESUMO

ABSTRACT: As a global major health problem and a leading cause of death, sepsis is defined as a failure of homeostasis, which is mainly initiated by an infection and followed by sustained excessive inflammation until immune suppression. Despite advances in the identification and management of clinical sepsis, morbidity, and mortality remain high. In addition, clinical trials have failed to yield promising results. In recent years, the mechanism of regulated cell death (RCD) in sepsis has attracted more and more attention, because these dying cells could release a large number of danger signals which contribute to inflammatory responses and exacerbation of sepsis, providing a new direction for us to make treatment strategy. Here we summarize mechanisms of several forms of RCD in sepsis including necroptosis, pyroptosis, ferroptosis. In conclusion, targeting RCD is considered a promising approach to treat sepsis.


Assuntos
Ferroptose , Sepse , Humanos , Inflamação , Necroptose , Piroptose , Sepse/terapia
9.
Cell Death Discov ; 8(1): 375, 2022 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-36030287

RESUMO

Neutrophil extracellular traps (NETs) assist pathogen clearance, while excessive NETs formation is associated with exacerbated inflammatory responses and tissue injury in acute lung injury (ALI)/acute respiratory distress syndrome (ARDS). Autophagy is generally considered to be a protective process, but autophagy dysfunction is harmful. Whether and how NETs affect autophagic flux during sepsis-induced ALI are currently unknown. Here, we confirmed that the level of NETs was increased in ARDS patients and mice models, which led to impairment of autophagic flux and deterioration of the disease. Mechanistically, NETs activated METTL3 mediated m6A methylation of Sirt1 mRNA in alveolar epithelial cells, resulting in abnormal autophagy. These findings provide new insights into how NETs contribute to the development of sepsis-associated ALI/ARDS.

10.
Front Cell Infect Microbiol ; 11: 677902, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34336711

RESUMO

Background: Patients with sepsis may progress to acute respiratory distress syndrome (ARDS). Evidence of neutrophil extracellular traps (NETs) in sepsis-induced lung injury has been reported. However, the role of circulating NETs in the progression and thrombotic tendency of sepsis-induced lung injury remains elusive. The aim of this study was to investigate the role of tissue factor-enriched NETs in the progression and immunothrombosis of sepsis-induced lung injury. Methods: Human blood samples and an animal model of sepsis-induced lung injury were used to detect and evaluate NET formation in ARDS patients. Immunofluorescence imaging, ELISA, Western blotting, and qPCR were performed to evaluate in vitro NET formation and tissue factor (TF) delivery ability. DNase, an anti-TF antibody, and thrombin inhibitors were applied to evaluate the contribution of thrombin to TF-enriched NET formation and the contribution of TF-enriched NETs to immunothrombosis in ARDS patients. Results: Significantly increased levels of TF-enriched NETs were observed in ARDS patients and mice. Blockade of NETs in ARDS mice alleviated disease progression, indicating a reduced lung wet/dry ratio and PaO2 level. In vitro data demonstrated that thrombin-activated platelets were responsible for increased NET formation and related TF exposure and subsequent immunothrombosis in ARDS patients. Conclusion: The interaction of thrombin-activated platelets with PMNs in ARDS patients results in local NET formation and delivery of active TF. The notion that NETs represent a mechanism by which PMNs release thrombogenic signals during thrombosis may offer novel therapeutic targets.


Assuntos
Armadilhas Extracelulares , Lesão Pulmonar , Sepse , Animais , Progressão da Doença , Humanos , Camundongos , Neutrófilos , Sepse/complicações , Tromboplastina
11.
Front Med (Lausanne) ; 8: 651552, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34026785

RESUMO

Ferroptosis is a newly discovered type of regulated cell death that is different from apoptosis, necrosis and autophagy. Ferroptosis is characterized by iron-dependent lipid peroxidation, which induces cell death. Iron, lipid and amino acid metabolism is associated with ferroptosis. Ferroptosis is involved in the pathological development of various diseases, such as neurological diseases and cancer. Recent studies have shown that ferroptosis is also closely related to acute lung injury (ALI)/ acute respiratory distress syndrome (ARDS), suggesting that it can be a novel therapeutic target. This article mainly introduces the metabolic mechanism related to ferroptosis and discusses its role in ALI/ARDS to provide new ideas for the treatment of these diseases.

12.
Cell Death Dis ; 12(11): 984, 2021 10 22.
Artigo em Inglês | MEDLINE | ID: mdl-34686654

RESUMO

Delayed wound healing causes problems for many patients both physically and psychologically, contributing to pain, economic burden, loss of function, and even amputation. Although many factors affect the wound healing process, abnormally prolonged or augmented inflammation in the wound site is a common cause of poor wound healing. Excessive neutrophil extracellular trap (NET) formation during this phase may amplify inflammation and hinder wound healing. However, the roles of NETs in wound healing are still unclear. Herein, we briefly introduce NET formation and discuss the possible NET-related mechanisms in wound healing. We conclude with a discussion of current studies, focusing on the roles of NETs in diabetic and normoglycemic wounds and the effectiveness of NET-targeting treatments in wound healing.


Assuntos
Armadilhas Extracelulares/metabolismo , Neutrófilos/metabolismo , Cicatrização/genética , Animais , Humanos , Camundongos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA