RESUMO
This study explored the impact of penehyclidine hydrochloride on cognitive function in rats with brain injury. Sprague-Dawley rats (n=36) were randomly assigned to sham-operation, model, and penehyclidine hydrochloride groups. Rats in the sham-operation group underwent craniotomy, while the model and penehyclidine hydrochloride groups received brain injury models and interventions with normal saline and penehyclidine hydrochloride, respectively. Specimens were obtained two weeks post-intervention. Neurological deficits were evaluated using Zea-Longa scores, and memory was assessed with the Morris water maze test. ELISA determined brain-derived neurotrophic factor (BDNF) and nerve growth factor (NGF) content. mRNA expressions of BDNF and NGF were assessed via qPCR, and phosphorylated CREB (p-CREB) protein expression was measured by Western blotting. Compared to the sham-operation group, both model and penehyclidine hydrochloride groups showed increased Zea-Longa scores. Escape latencies were longer and platform crossings were fewer in model and penehyclidine hydrochloride groups compared to the sham-operation group, but penehyclidine hydrochloride demonstrated a shorter latency and more platform crossings than the model group. BDNF and NGF content decreased in model and penehyclidine hydrochloride groups compared to the sham-operation group, with an increase in the penehyclidine hydrochloride group compared to the model group. mRNA expression levels declined in model and penehyclidine hydrochloride groups but were higher in the latter. p-CREB protein expression was lower in model and penehyclidine hydrochloride groups compared to the sham-operation group but higher in the penehyclidine hydrochloride group than the model group. Penehyclidine hydrochloride exhibited neuroprotective effects by upregulating the cAMP/CREB signaling pathway, improving cognitive function in rats with brain injury.
Assuntos
Lesões Encefálicas , Fator Neurotrófico Derivado do Encéfalo , Cognição , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico , AMP Cíclico , Quinuclidinas , Ratos Sprague-Dawley , Transdução de Sinais , Animais , Transdução de Sinais/efeitos dos fármacos , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/metabolismo , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Fator Neurotrófico Derivado do Encéfalo/genética , Quinuclidinas/farmacologia , Quinuclidinas/uso terapêutico , Cognição/efeitos dos fármacos , Masculino , Lesões Encefálicas/tratamento farmacológico , Lesões Encefálicas/metabolismo , AMP Cíclico/metabolismo , Ratos , Fator de Crescimento Neural/metabolismo , Fator de Crescimento Neural/genética , Fosforilação/efeitos dos fármacos , Fármacos Neuroprotetores/farmacologia , Fármacos Neuroprotetores/uso terapêutico , Modelos Animais de DoençasRESUMO
Oxidation of volatile organic compounds (VOCs) forms oxygenated organic molecules (OOMs), which contribute to secondary pollution. Herein, we present measurement results of OOMs using chemical ionization mass spectrometry with nitrate as the reagent ion in Shanghai. Compared to those in forests and laboratory studies, OOMs detected at this urban site were of relatively lower degree of oxygenation. This was attributed to the high NOx concentrations (â¼44 ppb), which overall showed a suppression on the propagation reactions. As another result, a large fraction of nitrogenous OOMs (75%) was observed, and this fraction further increased to 84% under a high NO/VOC ratio. By applying a novel framework on OOM categorization and supported by VOC measurements, 50 and 32% OOMs were attributed to aromatic and aliphatic precursors, respectively. Furthermore, aromatic OOMs are more oxygenated (effective oxygen number, nOeff = 4-6) than aliphatic ones (nOeff = 3-4), which can be partly explained by the difference in initiation mechanisms and points to possible discrimination in termination reactions. This study highlights the roles of NOx in OOM formation in urban areas, as well as the formation of nitrogenous products that might show discrimination between aromatic and aliphatic VOCs.
Assuntos
Poluentes Atmosféricos , Ozônio , Compostos Orgânicos Voláteis , Poluentes Atmosféricos/análise , Compostos Orgânicos Voláteis/análise , China , Ozônio/análise , Monitoramento Ambiental , Nitrogênio/análiseRESUMO
Docetaxel (DTX) is an artificial semi-synthetic second-generation taxane anti-tumor drug, which is suitable for the treatment of various cancers such as lung cancer. The route of administration of DTX formulations has been extended to oral, intravenous, and rectal, with few studies on pulmonary administration being reported. Here, we had developed DTX liposomes (DTX-lips) for pulmonary inhalation administration. The particle size of the preparation was 125 nm, the encapsulation efficiency was 94.4 ± 0.14%, and the drug loading capacity was 1.26 ± 0.01%. It had good stability. The fine particle fraction with aerodynamic diameter less than 6.4 µm accounts for 64.63 ± 0.12%, showed excellent aerosolization performance. DTX-lips were slow to release in simulated lung fluid. The fluorescence distribution experimented in mice and tissues showed that the fluorescence of the inhaled liposome group was mainly distributed in the lung, and the retention time was significantly prolonged as compared with those of the other two groups. No significant fluorescence was observed in other tissues, which was conducive to the full effect of the drug in the lung tissue. DTX-lips had no damage to respiratory system and whole body. These results indicated that the inhaled DTX-lips had good lung targeting, reduced accumulation in other organs, and improved the safety and effectiveness of the drug.
Assuntos
Antineoplásicos , Neoplasias Pulmonares , Camundongos , Animais , Docetaxel , Lipossomos , Pulmão , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/patologia , Linhagem Celular Tumoral , Portadores de FármacosRESUMO
During the Covid-19 outbreak, strict lockdown measures led to notable reductions in transportation-related emissions and significantly altered atmospheric pollution characteristics in urban and suburban areas. In this work, we compare comprehensive online measurements of PM2.5 major components and organic molecular markers in a suburban location in Shanghai, China before lockdown (Dec. 28, 2019 to Jan. 23, 2020) and during lockdown (Jan. 24 to Feb. 9, 2020). The NOx levels declined sharply by 59% from 44 to 18 ppb during the lockdown, while O3 rose two times higher to 42 ppb. The PM2.5 level dropped from 64 to 49 µg m-3 (-24%). The major components all showed reductions, with the reduction of nitrate most prominent at -58%, followed by organics at -19%, and sulfate at -17%. Positive matrix factorization analysis identifies fourteen source factors, including nine primary sources and five secondary sources. The secondary sources consist of sulfate-rich factor, nitrate-rich factor, and three secondary organic aerosol (SOA) factors, with SOA_I being anthropogenic SOA, SOA_II associated with later generation products of organic oxidation, and SOA_III being biogenic SOA. The combined secondary sources contributed to 69% and 63% (40 and 22 µg m-3) of PM2.5 before and during lockdown, respectively, among which the reductions in the nitrate-rich (-55%) factor was the most prominent. Among primary sources, large reductions (>80%) were observed in contributions from industrial, cooking, and vehicle emissions. Unlike some studies reporting that the restriction during the Covid-19 resulted in enhanced secondary sulfate and SOA formation, we observed decreases in both secondary inorganic and SOA formation despite the overall elevated oxidizing capacity in the suburban site. Our results indicate that the formation change in secondary inorganic and organic compounds in response to substantial reductions in urban primary precursors are different for urban and suburban environments.
RESUMO
Air quality in megacities is significantly impacted by emissions from vehicles and other urban-scale human activities. Amid the outbreak of Coronavirus (COVID-19) in January 2020, strict policies were in place to restrict people's movement, bringing about steep reductions in pollution activities and notably lower ambient concentrations of primary pollutants. In this study, we report hourly measurements of fine particulate matter (i.e., PM2.5) and its comprehensive chemical speciation, including elemental and molecular source tracers, at an urban site in Shanghai spanning a period before the lockdown restriction (BR) (1 to 23 Jan. 2020) and during the restriction (DR) (24 Jan. to 9 Feb. 2020). The overall PM2.5 was reduced by 27% from 56.2 ± 40.9 (BR) to 41.1 ± 25.3 µg m-3 (DR) and the organic carbon (OC) in PM2.5 was similar, averaged at 5.45 ± 2.37 (BR) and 5.42 ± 1.75 µgC m-3 (DR). Reduction in nitrate was prominent, from 18.1 (BR) to 9.2 µg m-3 (DR), accounting for most of the PM2.5 decrease. Source analysis of PM2.5 using positive matrix factorization modeling of comprehensive chemical composition, resolved nine primary source factors and five secondary source factors. The quantitative source analysis confirms reduced contributions from primary sources affected by COVID-19, with vehicular emissions showing the largest drop, from 4.6 (BR) to 0.61 µg m-3 (DR) and the percentage change (-87%) in par with vehicle traffic volume and fuel sale statistics (-60% to -90%). In the same time period, secondary sources are revealed to vary in response to precursor reductions from the lockdown, with two sources showing consistent enhancement while the other three showing reductions, highlighting the complexity in secondary organic aerosol formation and the nonlinear response to broad primary precursor pollutants. The combined contribution from the two secondary sources to PM2.5 increased from 7.3 ± 6.6 (BR) to 14.8 ± 9.3 µg m-3 (DR), partially offsetting the reductions from primary sources and nitrate while their increased contribution to OC, from 1.6 ± 1.4 (BR) to 3.2 ± 2.0 µgC m-3 (DR), almost offset the decrease coming from the primary sources. Results from this work underscore challenges in predicting the benefits to PM2.5 improvement from emission reductions of common urban primary sources.
Assuntos
COVID-19/patologia , Carbono/análise , Material Particulado/análise , Biomassa , COVID-19/virologia , Carbono/química , China , Análise por Conglomerados , Monitoramento Ambiental/métodos , Humanos , Nitratos/análise , Quarentena , SARS-CoV-2/isolamento & purificaçãoRESUMO
A modified community multiscale air quality model, which can simulate the regional distributions of 2,3-dihydroxy-4-oxopentanoic acid (DHOPA), a marker species for monoaromatic secondary organic aerosol (SOA), was applied to assess the applicability of using the DHOPA to aromatic SOA mass ratio (fSOA) from smog chamber experiments to estimate aromatic SOA during a three-week wintertime air quality campaign in urban Shanghai. The modeled daily DHOPA concentrations based on the chamber-derived mass yields agree well with the organic marker field measurements (R = 0.79; MFB = 0.152; and MFE = 0.440). Two-thirds of the DHOPA are from the oxidation of ARO1 (lumped less-reactive aromatic species; mostly toluene), with the rest from ARO2 (lumped more-reactive aromatic species; mostly xylenes). Modeled DHOPA is mainly in the particle phase under ambient organic aerosol (OA) loading but could exhibit significant gas-particle partitioning when a higher estimation of the DHOPA vapor pressure is used. The modeled fSOA shows a strong dependence on the OA loading when only semivolatile aromatic SOA components are included in the fSOA calculations. However, this OA dependence becomes weaker when non-volatile oligomers and dicarbonyl SOA products are considered. A constant fSOA value of â¼0.002 is determined when all aromatic SOA components are included, which is a factor of 2 smaller than the commonly applied chamber-based fSOA value of 0.004 for toluene. This model-derived fSOA value does not show much spatial variation and is not sensitive to alternative estimates of DHOPA vapor pressures and SOA yields, and thus provides an appropriate scaling factor to assess aromatic SOA from DHOPA measurements. This result helps refine the quantification of SOA attributable to monoaromatic hydrocarbons in urban environments and thereby facilitates the evaluation of control measures targeting these specific precursors.
Assuntos
Poluentes Atmosféricos , Aerossóis/análise , Poluentes Atmosféricos/análise , China , Modelos Químicos , ToluenoRESUMO
Cooking organic aerosol (COA) is an important source of particulate pollutants in urbanized regions. Yet, the diversity and complexity of COA components make direct identification and quantification of COA difficult. In this study, we conducted collocated OA measurements with an aerosol mass spectrometer (AMS) and a thermal desorption aerosol gas chromatography-mass spectrometer (TAG) in Shanghai. Cooking molecular tracers (e.g., C18 fatty acids, azelaic acid) measured by TAG provide unambiguous source information for evaluating the tracer ion (C6H10O+, m/z 98) used for identification and apportionment of COA in AMS analysis. Based on the collocated AMS and TAG measurements, two COA factors, namely, a primary COA (PCOA) and an oxygenated COA (OCOA) produced from rapid oxygenation of freshly emitted PCOA, were identified. Criteria for identifying COA factors from AMS analysis with different oxygenation levels are proposed, i.e., characteristic mass spectra, temporal variations, etc. Furthermore, two positive matrix factorization approaches, namely, AMS-PMF and the molecular marker (MM)-PMF, were compared for COA quantification, where high consistency was found with the contribution of COA to total PM2.5 mass estimated to be 9 ± 7% by AMS-PMF and 6 ± 5% by the MM-PMF. Our study highlights the important impacts of cooking activities on air quality in urban areas. We also demonstrate the advantage of conducting collocated measurements using multiple high time resolution mass spectrometric techniques in advancing our understanding of atmospheric OA chemistry and improving the accuracy of source apportionment.
Assuntos
Poluentes Atmosféricos , Material Particulado , Aerossóis/análise , Poluentes Atmosféricos/análise , China , Culinária , Monitoramento Ambiental , Cromatografia Gasosa-Espectrometria de Massas , Espectrometria de Massas , Material Particulado/análiseRESUMO
Enhancer of Zeste Homolog 2 (EZH2) is highly expressed in kinds of malignant tumors and related to tumor occurrence, development, and prognosis. EZH2 is the catalytic subunit of the polycomb repressive complex 2 (PRC2), which promotes cell proliferation, migration, and invasion by epigenetic regulation of anti-tumor gene. It can activate numerous tumor-associated signaling pathways and interfere with DNA damage repair. In recent years, large amounts of studies have shown that EZH2 is closely related to gynecologic-related malignancies and can be used as a potential target gene for the treatment of gynecological-related malignancies. This review summarizes the oncogenic function of EZH2 and introduces the recent advances in the development of EZH2 inhibitors. On this basis, future research prospect of EZH2 is proposed.
Assuntos
Antineoplásicos/farmacologia , Proteína Potenciadora do Homólogo 2 de Zeste/metabolismo , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Neoplasias dos Genitais Femininos/tratamento farmacológico , Neoplasias dos Genitais Femininos/enzimologia , Proteína Potenciadora do Homólogo 2 de Zeste/antagonistas & inibidores , Proteína Potenciadora do Homólogo 2 de Zeste/genética , Feminino , HumanosRESUMO
Comparatively limited knowledge is known about the accumulation processes of tributyltin (TBT) and triphenyltin (TPT) in fish and aquatic plant in the freshwater environment, which has hindered a full understanding of their bioaccumulation potential and ecological risks. In the present study, sorption of TBT and TPT on dead biota of both carp and C. demersum from water via the batch equilibrium technique as well as uptake of them on live biota of both carp and C. demersum from water at a static and a dynamic kinetics tests were investigated, respectively. Both TBT and TPT exhibit a high affinity in carps and C. demersum. And C. demersum has a faster metabolism either for TBT or TPT than carp. The apparent uptake values (Cbio = 1904-8831 µg/kg) or bioconcentration factor (BCF = 3333-44000 L/kg) were one or two orders of magnitude higher than that of estimated by a simple sorption (405-472 µg/kg) or lipid model (74.5-149.6 µg/kg) for carp, indicating the uptake of TBT and TPT did not only depend on lipids but also oxygen ligands or macromolecules such as amino acids and proteins of the living organism. In contrast, the apparent Cbio values (149.1-926.4 µg/kg) of both TBT and TPT were lower than that of estimated by sorption model (1341-1902 µg/kg) for C. demersum, which were due to the rapid metabolic rate of them, especially for TBT. But no relation was observed between TBT and TPT concentrations and lipid contents in C. demersum.
Assuntos
Compostos Orgânicos de Estanho/farmacocinética , Compostos de Trialquitina/farmacocinética , Poluentes Químicos da Água/farmacocinética , Animais , Carpas/metabolismo , Cinética , Magnoliopsida/metabolismoRESUMO
Intermediate volatility organic compound (IVOC) emissions from a large cargo vessel were characterized under real-world operating conditions using an on-board measurement system. Test ship fuel-based emission factors (EFs) of total IVOCs were determined for two fuel types and seven operating conditions. The average total IVOC EF was 1003 ± 581 mg·kg-fuel-1, approximately 0.76 and 0.29 times the EFs of primary organic aerosol (POA) emissions from low-sulfur fuel (LSF, 0.38 wt % S) and high-sulfur fuel (HSF, 1.12 wt % S), respectively. The average total IVOC EF from LSF was 2.4 times that from HSF. The average IVOC EF under low engine load (15%) was 0.5-1.6 times higher than those under 36%-74% loads. An unresolved complex mixture (UCM) contributed 86.1 ± 1.9% of the total IVOC emissions. Ship secondary organic aerosol (SOA) production was estimated to be 546.5 ± 284.1 mg·kg-fuel-1; IVOCs contributed 98.9 ± 0.9% of the produced SOA on average. Fuel type was the dominant determinant of ship IVOC emissions, IVOC volatility distributions, and SOA production. The ship emitted more IVOC mass, produced higher proportions of volatile organic components, and produced more SOA mass when fueled with LSF than when fueled with HSF. When reducing ship POA emissions, more attention should be paid to commensurate control of ship SOA formation potential.
Assuntos
Poluentes Atmosféricos , Emissões de Veículos , Aerossóis , Compostos Orgânicos , Navios , VolatilizaçãoRESUMO
An integrated source apportionment methodology is developed by amalgamating the receptor-oriented model (ROM) and source-oriented numerical simulations (SOM) together to eliminate the weaknesses of individual SA methods. This approach attempts to apportion and dissect the PM2.5 sources in the Yangtze River Delta region during winter. First, three ROM models (CMB, PMF, ME2) are applied and compared for the preliminary SA results, with information from PM2.5 sampling and lab analysis during the winter seasons. The detailed source category contribution of SOM to PM2.5 is further simulated using the WRF-CAMx model. The two pieces of information from both ROM and SOM are then stitched together to give a comprehensive information on the PM2.5 sources over the region. With the integrated approach, the detailed contributing sources of the ambient PM2.5 at different receptors including rural and urban, coastal and in-land, northern and southern receptors are analyzed. The results are compared with previous data and shows good agreement. This integrative approach is more comprehensive and is able to produce a more profound and detailed understanding between the sources and receptors, compared with single models.
Assuntos
Poluentes Atmosféricos , Material Particulado , China , Monitoramento Ambiental , RiosRESUMO
In this work, a one-year observation focusing on high time resolution characteristics of components in fine particles was conducted at an urban site in Shanghai. Contributions of different components on visibility impairment were also studied. Our research indicates that the major components of PM2.5 in Shanghai are water-soluble inorganic ions and carbonaceous aerosol, accounting for about 60% and 30% respectively. Higher concentrations of sulfate (SO42-) and organic carbon (OC) in PM2.5 occurred in fall and summer, while higher concentrations of nitrate (NO3-) were observed in winter and spring. The mass concentrations of Cl- and K+ were higher in winter. Moreover, NO3- increased significantly during PM2.5 pollution episodes. The high values observed for the sulfate oxidizing rate (SOR), nitrate oxidizing rate (NOR) and secondary organic carbon (SOC) in OC indicate that photochemical reactions were quite active in Shanghai. The IMPROVE (Interagency Monitoring of Protected Visual Environments) formula was used in this study to investigate the contributions of individual PM2.5 chemical components to the light extinction efficient in Shanghai. Both NH4NO3 and (NH4)2SO4 had close relationships with visibility impairment in Shanghai. Our results show that the reduction of anthropogenic SO2, NOx and NH3 would have a significant effect on the improvement of air quality and visibility in Shanghai.
Assuntos
Poluentes Atmosféricos/análise , Monitoramento Ambiental , Material Particulado/análise , Aerossóis/análise , Aerossóis/química , Poluentes Atmosféricos/química , China , Nitratos , Tamanho da Partícula , Material Particulado/química , Estações do Ano , SulfatosRESUMO
Organic aerosols (OA) are closely related to the formation of both PM2.5 and O3 in the atmosphere. In this study, a thermal desorption aerosol GC/MS (TAG) online system was adopted to measure hourly concentrations of 94 total organic molecular markers in PM2.5 at an urban site in Shanghai from November 6th to December 31st, 2021. Combined with air mass cluster analysis and other online measurement data, the chemical characteristics of OA under the influence of different air masses, oxidant levels, and relative humidity (RH) levels were investigated. The results showed that OA was characterized by higher mass percentages of primary organic molecular markers (e.g., saturated fatty acids, unsaturated fatty acids, and alkanes) under the influence of local air masses. Further, high loadings of biomass burning tracers were observed in OA under the influence of long-range transported air masses. In contrast, OA impacted by marine air masses was laden with significantly higher fractions of secondary organic molecular markers, such as dicarboxylic acids and hydroxyl dicarboxylic acids, which were formed from a wide range of volatile organic precursors through photochemical and aqueous-phase processing. With the application of the positive matrix factorization (PMF) model, seven total primary source factors and five secondary source factors were resolved for PM2.5 and OA during the observation. Among them, secondary nitrate was the highest contributor to PM2.5 mass with a mass percentage of 25.2%, whereas vehicle emissions were the top contributor (24.0%) to OA mass. Primary source factors, including coal combustion, vehicle emission, and cooking emission as well as their corresponding secondary source factors (e.g., secondary nitrate, secondary organic aerosols 2, etc.) showed elevated contributions in PM2.5 and OA with the increase in PM2.5 masses, indicating that more stringent controls of local emission sources (e.g., coal combustion, vehicle emission, and cooking emission) are needed to further lower PM2.5 pollution and improve air quality in Shanghai.
RESUMO
The compositional characteristics, concentration of nitroaromatic compounds(NACs) in PM2.5 in urban Shanghai, and their correlation with gaseous precursors were investigated. A total of 39 winter and 46 summer PM2.5 samples from 2020 to 2021 were collected using a high-flow sampler and analyzed via ultra-performance liquid chromatography coupled with ESI-Orbitrap high-resolution mass spectrometry(UPLC-Orbitrap-HRMS). Quantitative analysis was performed on 12 NACs compounds, combined with backward trajectory meteorological elements, molecular composition, and classification analysis of CHON substances. The results showed that a total of 12 NACs had an average concentration in winter of 17.1 ng·m-3, which was three times higher than that in summer(5.7 ng·m-3), mainly due to air masses in winter coming primarily from the northern part of China with more biomass burning, whereas more air masses in summer came from the cleaner southeastern ocean. 4-Nitrophenol was the most abundant species of NACs in winter, whereas 4-nitrophenol(clean days) and 4-hydroxy-3-nitrobenzoic acid(polluted days) were the most abundant species in summer. Qualitative analysis based on features such as aromatic ring equivalence number(Xc), O/C, and H/C values for the identification and characterization of monocyclic and polycyclic aromatic compounds showed that CHON compounds were mainly aromatic compounds in winter and summer in urban Shanghai. The number and abundance of CHON compounds detected on PM2.5 polluted days were 2 and 1.5 times higher(winter) and 2.5 and 2 times higher(summer) than that on clean days, respectively. Comparing the analysis results of clean and polluted days in winter and summer, it was found that 80% of the CHON compounds with a relative abundance in the top 10 had O/N ≥ 3 and RDBE values between 5 and 8. The results suggest that these highly abundant CHON analogs may have had mononitro- or dinitro-substituted benzene rings. Correlation analysis between gaseous precursors and NACs indicated that oxidative reactive formation of VOCs(benzene, toluene, etc.) from anthropogenic emissions was the main source of NACs in summer. By contrast, it was influenced by a combination of biomass combustion emissions and secondary formation of oxidative NOx from anthropogenic VOCs in winter.
RESUMO
Nitroaromatic compounds (NACs) are an important class of nitrogen-containing compounds in fine particles. The investigation of characteristics and seasonal variation of NACs in PM2.5 increases our knowledge about nitrogen-containing compounds and contributes to the scientific basis in formulating reduction policies of NOx in urban areas. In this study, we analyzed the chemical composition of PM2.5 samples collected from March 2018 to February 2019 in an urban location in Shanghai. A total of 2439-3695 organic molecular formulas were detected using UPLC-Orbitrap MS. Nine NACs were quantified using an internal standard method. In spring, ρ(NACs) ranged from 3.12 to 16.76 ng·m-3, and the average concentration was 9.31 ng·m-3. In summer, it ranged from 1.05 to 9.70 ng·m-3, and the average value was 4.16 ng·m-3. In autumn, it ranged from 2.87 to 36.27 ng·m-3, and its average was 9.84 ng·m-3. In winter, it ranged from 4.83 to 56.23 ng·m-3, and the average was 22.37 ng·m-3. 4-Nitrophenol accounted for more than 25% of the quantified NACs in different seasons. In summer, the concentration of 5-nitrosalicylic acid accounted for 36%, but it decreased to 19% in winter. NACs in summer mainly originated from secondary formation, as evidenced by their clear correlation with the oxidant level, whereas biomass burning became the main source of NACs in winter.
Assuntos
Poluentes Atmosféricos , Material Particulado , Aerossóis/análise , Poluentes Atmosféricos/análise , China , Monitoramento Ambiental , Nitrogênio , Material Particulado/análise , Estações do AnoRESUMO
High particulate matter (PM) pollution episodes still occur occasionally in urban China, despite of improvements in recent years. Investigating the influencing factors of high-PM episodes is beneficial in the formulation of effective control measures. We herein present the effects of weather condition, emission source, and chemical conversion on the occurrence of high-PM episodes in urban Shanghai using multiple online measurements. Three high-PM episodes, i.e., locally-accumulated, regionally-transported, and dust-affected ones, as well as a clean period were selected. Stagnant air with temperature inversion was found in both locally-accumulated and regionally-transported high-PM episodes, but differences in PM evolution were observed. In the more complicated dust-affected episode, the weather condition interacted with the emission/transport sources and chemical conversion, resulting in consecutive stages with different PM characteristics. Specifically, there were (1) stronger local accumulation in the pre-dust period, (2) dust-laden air with aged organic aerosol (OA) upon dust arrival, (3) pollutants being swept into the ocean, and (4) back to the city with aged OA. Our results suggest that (a) local emissions could be rapidly oxidized in some episodes but not all, (b) aged OA from long-range transport (aged in space) had a similar degree of oxygenation compared to the prolonged local oxidation (aged in time), and (c) OA aged over land and over the ocean were similar in chemical characteristics. The findings help better understand the causes and evolution of high-PM episodes, which are manifested by the interplays among meteorology, source, and chemistry, providing a scientific basis for control measures.
Assuntos
Poluentes Atmosféricos , Poluição do Ar , Poluentes Ambientais , Material Particulado/análise , Meteorologia , Poluentes Atmosféricos/análise , Monitoramento Ambiental , China , Aerossóis/análise , Poeira/análise , Poluição do Ar/análiseRESUMO
Waste residues have been prepared as biochar (BC) adsorbents to remove sulfonamides (SAs) at low cost, but the mechanisms of the differences in the SA adsorption performance of different BCs are not clear. Thus, the adsorption characteristics of two SAs (sulfadiazine and sulfathiazole) on three BCs derived from waste residues (sewage sludge (SB), pig manure (PB), and rice straw (RB)) were investigated. The results showed that the adsorption mechanism was chemisorption and RB was the preferred BC under the different tested conditions (pH, Ca2+, and humic acid), followed by PB and SB. To interpret the phenomena, FTIR, XRD, and XPS analyses were performed and results indicated that SB had the lowest C content, and there was a very significant difference in the concentrations of the two O functional groups (CËO and CâO) for PB and RB (Pâ¯<â¯0.01). Density functional theory calculations revealed that the mechanisms of SA adsorption onto BCs were mainly through π-π electron donor acceptor interactions and H bonds. There was no significant difference in the π interactions between the SAs-BC containing CâO (BC(OH)) and the SAs-BC containing CËO (BC(CËO)), whereas the H bond strength of SAs-BC(OH) was much stronger than that of SAs-BC(CËO).
Assuntos
Carvão Vegetal , Sulfonamidas , Adsorção , Animais , Esterco , SuínosRESUMO
To avoid sequencing error resulting from use of apyrase in conventional 4- enzyme pyrosequencing system, a non-apyrase 3-enzyme pyrosequencing system with a better performance of quantitative analysis was established. The method is to immobilize biotinylated DNA template, ATP sulfurylase and luciferase on streptavidin-coated magnetic beads for pyrosequencing. After pyrosequencing, ATP produced from the pyrosequencing reaction and excess dNTPs were removed by magnetic separation technique; another dNTP was then dispensed for sequencing reaction, and the components interfering with the next circle of pyrosequencing reaction were removed by the same way, achieving the circular sequencing. This new system can accurately measure base sequences of a target DNA template, and also can quantitatively determine the relative ratio of two alleles. The allele ratios in two SNPs (rs1042917 and rs4818219) having a higher heterozygote rate on chromosome 21 were successfully detected for 16 normal samples and 8 clinical samples from Down's syndrome patients. The results can accurately demonstrate whether or not the target sample has equal copies of chromosome 21 from mother and father. This paper established a non-apyrase 3-enzyme pyrosequencing method, which owns a good perform-ance of quantitative analysis. The method is especially suitable to allelic quantification of an SNP, enabling the rapid diagnosis of Down's syndrome by analyzing allele ratio of SNPs on chromosome 21.
Assuntos
DNA/genética , Síndrome de Down/diagnóstico , Polimorfismo de Nucleotídeo Único , Análise de Sequência de DNA/métodos , Alelos , Apirase/metabolismo , Cromossomos Humanos Par 21/genética , DNA/química , DNA/metabolismo , Síndrome de Down/genética , Frequência do Gene , Humanos , Luciferases/metabolismo , Reação em Cadeia da Polimerase , Reprodutibilidade dos Testes , Sensibilidade e Especificidade , Sulfato Adenililtransferase/metabolismoRESUMO
The widespread occurrence and distribution of organotin compounds (OTCs) in both marine and freshwater ecosystems has aroused considerable concerns in most countries worldwide. In this work, individual kinetics of the elimination of three butyltins and three phenyltins from C. demersum L. were systematically studied for over 240 h in clean water after a 48h period of accumulation. All OTCs were rapidly metabolized to nontoxic inorganic tin by C. demersum L. through stepwise debutylation or dephenylation. In addition to inorganic tin, monobutyltin (MBT) and monophenyltin (MPT) were the primary degradation products of tributyltin (TBT) and triphenyltin (TPT), with small amounts of dibutyltin (DBT) and diphenyltin (DPT), respectively, also being present. The estimated half-life of TPT (240 h) in C. demersum L. was longer than that of TBT (100 h), although the TPT was less hydrophobic. The corresponding degradation mechanisms may be attributed to a cascade of enzymatic reactions of CYP450 enzymes in C. demersum L. The pH played an important role in both plant growth and TBT degradation. Although pH 8.9 was more suitable for C. demersum L. growth, it uptook and metabolized more TBT at pH 5.0, which may be because the cationic species TBT+ (at pH 5.0) was metabolized more easily than the neutral hydroxide species TBTOH (at pH 8.9). C. demersum L. may thus be the plant with the most potential for the remediation of OTC-contaminated freshwater environments.
Assuntos
Magnoliopsida/metabolismo , Compostos Orgânicos de Estanho/metabolismo , Poluentes Químicos da Água/metabolismo , Ecossistema , Água Doce , Compostos de Trialquitina , Poluentes Químicos da Água/análiseRESUMO
Diagnostic indicators for the validation of PM2.5 compositional data were calculated, based on the monitoring results of approximately 2100 ambient samples collected in the Yangzi River Delta from 2014 to 2017. According to the results of a correlation analysis, we propose that the audit indexes of the monitoring data of PM2.5 components in ambient air should include:equivalent ratios of anion-cation charge balance(A/C), the consistency between sum of all measured components(∑species) and weighed PM2.5, the consistency between mass reconstructed PM2.5(PM2.5, reconstructed) and weighed PM2.5, the chemical consistency between elemental S and water-soluble SO42-, elemental K and water-soluble K+, and the chemical consistency of theoretical and tested NH4+. The double-sided 95% reference ranges of anion-cation equivalent balance (A/C), ∑species/PM2.5, PM2.5, reconstructed/PM2.5, S/SO42-, and K/K+ ratios were determined in terms of P2.5 and P97.5 as follows:(0.82, 1.35), (0.63, 0.94), (0.62, 1.00), (0.28, 0.50), and (0.66, 2.31). These diagnostic indicators were helpful for judging the errors of chemical component analysis and retain seasonal variation stability. In most cases, NH4+ existed in the form of NH4NO3 and (NH4)2SO4 in spring and summer. With the approach of autumn and winter, it transformed to NH4NO3, (NH4)2SO4, and NH4Cl. The results of literature verification showed the pass rate of A/C was 87.1% and the rate of other indexes was 100%, indicating that the above audit indexes we propose could be applied to not only the Yangzi River Delta but the entire country. Furthermore, there were certain conditions in applying the diagnostic indicators. The S/SO42- ratio worked well with PM2.5 ≥ 40 µg·m-3 in summer and with 60 µg·m-3 ≤ PM2.5 ≤ 140 µg·m-3 in spring, autumn, and winter. Other audit indexes were available universally in all weathers under the condition of PM2.5 ≥ 60 µg·m-3.