Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Sens Actuators B Chem ; 3822023 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-36970106

RESUMO

Wireless brain technologies are empowering basic neuroscience and clinical neurology by offering new platforms that minimize invasiveness and refine possibilities during electrophysiological recording and stimulation. Despite their advantages, most systems require on-board power supply and sizeable transmission circuitry, enforcing a lower bound for miniaturization. Designing new minimalistic architectures that can efficiently sense neurophysiological events will open the door to standalone microscale sensors and minimally invasive delivery of multiple sensors. Here we present a circuit for sensing ionic fluctuations in the brain by an ion-sensitive field effect transistor that detunes a single radiofrequency resonator in parallel. We establish sensitivity of the sensor by electromagnetic analysis and quantify response to ionic fluctuations in vitro. We validate this new architecture in vivo during hindpaw stimulation in rodents and verify correlation with local field potential recordings. This new approach can be implemented as an integrated circuit for wireless in situ recording of brain electrophysiology.

2.
Phys Rev Lett ; 129(21): 210501, 2022 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-36461974

RESUMO

Quantum memories at telecom wavelengths are crucial for the construction of large-scale quantum networks based on existing fiber networks. On-demand storage of telecom photonic qubits is an essential request for such networking applications but yet to be demonstrated. Here we demonstrate the storage and on-demand retrieval of telecom photonic qubits using a laser-written waveguide fabricated in an ^{167}Er^{3+}:Y_{2}SiO_{5} crystal. Both ends of the waveguide memory are directly connected with fiber arrays with a fiber-to-fiber efficiency of 51%. Storage fidelity of 98.3(1)% can be obtained for time-bin qubits encoded with single-photon-level coherent pulses, which is far beyond the maximal fidelity that can be achieved with a classical measure and prepared strategy. This device features high reliability and easy scalability, and it can be directly integrated into fiber networks, which could play an essential role in fiber-based quantum networks.

3.
Phys Rev Lett ; 128(18): 180501, 2022 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-35594095

RESUMO

Photonic polarization qubits are widely used in quantum computation and quantum communication due to the robustness in transmission and the easy qubit manipulation. An integrated quantum memory for polarization qubits is a useful building block for large-scale integrated quantum networks. However, on-demand storing polarization qubits in an integrated quantum memory is a long-standing challenge due to the anisotropic absorption of solids and the polarization-dependent features of microstructures. Here we demonstrate a reliable on-demand quantum memory for polarization qubits, using a depressed-cladding waveguide fabricated in a ^{151}Eu^{3+}:Y_{2}SiO_{5} crystal. The site-2 ^{151}Eu^{3+} ions in Y_{2}SiO_{5} crystal provides a near-uniform absorption for arbitrary polarization states and a new pump sequence is developed to prepare a wideband and enhanced absorption profile. A fidelity of 99.4±0.6% is obtained for the qubit storage process with an input of 0.32 photons per pulse, together with a storage bandwidth of 10 MHz. This reliable integrated quantum memory for polarization qubits reveals the potential for use in the construction of integrated quantum networks.

4.
Org Biomol Chem ; 20(7): 1480-1487, 2022 02 16.
Artigo em Inglês | MEDLINE | ID: mdl-35103271

RESUMO

Described herein is a practical and convenient approach that enabled radical-mediated conjugate addition of unreactive alkenes to electron-deficient alkenes leading to a broad range of substituted malononitriles. These reactions are believed to proceed by Fe-catalysed hydrogen atom transfer (HAT) onto the alkenes affording carbon-centered radical intermediates with Markovnikov selectivity, followed by the capture of electron-deficient alkenes. We explored this synthesis approach under mild conditions with high efficiency and broad substrate scope and the utility is highlighted by the further synthetic transformations of the obtained substituted malononitriles.

5.
Molecules ; 27(1)2021 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-35011265

RESUMO

We report an efficient and practical iron-catalyzed hydrogen atom transfer protocol for assembling acetylenic motifs into functional alkenes. Diversities of internal alkynes could be obtained from readily available alkenes and acetylenic sulfones with excellent Markovnikov selectivity. An iron hydride hydrogen atom transfer catalytic cycle was described to clarify the mechanism of this reaction.

6.
Phys Rev Lett ; 125(26): 260504, 2020 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-33449731

RESUMO

Photonic quantum memory is the core element in quantum information processing (QIP). For the scalable and convenient practical applications, great efforts have been devoted to the integrated quantum memory based on various waveguides fabricated in solids. However, on-demand storage of qubits, which is an essential requirement for QIP, is still challenging to be implemented using such integrated quantum memory. Here we report the on-demand storage of time-bin qubits in an on-chip waveguide memory fabricated on the surface of a ^{151}Eu^{3+}:Y_{2}SiO_{5} crystal, utilizing the Stark-modulated atomic frequency comb protocol. A qubit storage fidelity of 99.3%±0.2% is obtained with single-photon-level coherent pulses, far beyond the highest fidelity achievable using the classical measure-and-prepare strategy. The developed integrated quantum memory with the on-demand retrieval capability represents an important step toward practical applications of integrated quantum nodes in quantum networks.

7.
Opt Express ; 26(13): 17025-17032, 2018 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-30119519

RESUMO

Single-walled carbon nanotubes (SWCNTs) are applied to realize an enhanced frequency modulation for a suspended THz silicon grating, which is fabricated by a nanosecond laser direct writing and coated with the synthetic SWCNTs/polyacrylic emulsion composite. With terahertz time domain spectroscopy system, the transmission spectra of the bare and SWCNTs coated silicon grating are measured and compared. The SWCNTs coated silicon grating can realize an improved extinction ratio and quality factor, which is due to the SWCNTs caused local field enhancement and can be explained by the theoretical simulation with finite element method. Besides the effective modulation of the grating transmittance, SWCNTs can also be integrated with other platforms and applied in future THz imaging and communication systems.

8.
Med Sci Monit ; 20: 2846-54, 2014 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-25549796

RESUMO

BACKGROUND: Vascular restenosis occurring after CABG is a major clinical problem that needs to be addressed. Vein grafts are associated with a higher degree of stenosis than artery grafts. However, the mechanism responsible for this effect has not been elucidated. We aimed to establish a rabbit model of vascular restenosis after bilateral carotid artery grafting, and to investigate the associated spatiotemporal changes of intimal hyperplasia in carotid artery and jugular vein grafts after surgery. MATERIAL AND METHODS: Twenty adult New Zealand white rabbits (10 males; 10 females), weighing 2.0-2.5 kg, were obtained from the Experimental Animal Center of Southern Medical University, Guangzhou, China (License No.: scxk-Guangdong-2006-0015). We quantitatively analyzed intimal thickness, area, and degree of stenosis in carotid artery and jugular vein bridges. RESULTS: After 8 weeks of a high-fat diet, rabbit carotid arteries showed early atherosclerotic lesions. With increasing time after surgery, carotid artery and jugular vein grafts showed histopathological and morphological changes, including smooth muscle cell migration, lipid deposition, intimal hyperplasia, and vascular stenosis. The degree of vascular stenosis was significantly higher in vein grafts than in artery grafts at all time points - 35.1±6.7% vs. 16.1±2.6% at Week 12, 56.2±8.5% vs. 23.4±3.4% at Week 16, and 71.2±1.3% vs. 25.2±5.3% at Week 20. CONCLUSIONS: Rabbit bilateral carotid arteries were grafted with carotid artery and jugular vein bridges to simulate pathophysiological processes that occur in people after CABG surgery.


Assuntos
Artérias Carótidas/transplante , Modelos Animais de Doenças , Oclusão de Enxerto Vascular/cirurgia , Animais , Aterosclerose/patologia , Aterosclerose/terapia , Artérias Carótidas/patologia , Artérias Carótidas/ultraestrutura , Dieta Hiperlipídica , Feminino , Veias Jugulares/patologia , Veias Jugulares/ultraestrutura , Masculino , Coelhos
9.
Microsyst Nanoeng ; 10: 44, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38529010

RESUMO

Circuit-integrated electromagnets are fundamental building blocks for on-chip signal transduction, modulation, and tunability, with specific applications in environmental and biomedical micromagnetometry. A primary challenge for improving performance is pushing quality limitations while minimizing size and fabrication complexity and retaining spatial capabilities. Recent efforts have exploited highly involved three-dimensional synthesis, advanced insulation, and exotic material compositions. Here, we present a rapid nanofabrication process that employs electron beam dose control for high-turn-density diamond-embedded flat spiral coils; these coils achieve efficient on-chip electromagnetic-to-optical signal conversion. Our fabrication process relies on fast 12.3 s direct writing on standard poly(methyl methacrylate) as a basis for the metal lift-off process. Prototypes with 70 micrometer overall diameters and 49-470 nm interturn spacings with corresponding inductances of 12.3-12.8 nH are developed. We utilize optical micromagnetometry to demonstrate that magnetic field generation at the center of the structure effectively correlates with finite element modeling predictions. Further designs based on our process can be integrated with photolithography to broadly enable optical magnetic sensing and spin-based computation.

10.
J Pharm Biomed Anal ; 247: 116262, 2024 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-38820835

RESUMO

Poria cocos (Schw.) Wolf (PCW) are the dried sclerotia of Poaceae fungus Poria cocos that contain many biological activity ingredients such as polysaccharides and triterpenoids. The carbohydrates from Poria cocos have been proven to possess anti-inflammatory and antioxidant effects. This study aimed to investigate the impact and mechanism of Poria cocos oligosaccharides (PCO) protecting mice against acute lung injury (ALI). We examined the histopathological analysis of lung injury, inflammatory, and edema levels to evaluate the benefits of PCO during ALI. As a result, PCO improved the lipopolysaccharide (LPS) induced lung injury and decreased the inflammatory cytokines of lung tissue. Simultaneously, PCO alleviated lung edema by regulating the expression of aquaporin5 (AQP5) and epithelial Na+ channel protein (ENaC-α). Additionally, untargeted metabolomics was performed on the plasma of ALI mice via HUPLC-Triple-TOF/MS. The results indicated that linoleic acid, linolenic acid, arachidonic acid, carnosine, glutamic acid, and 1-methylhistamine were the biomarkers in ALI mice. Besides, metabolic pathway analysis suggested PCO affected the histidine and fatty acid metabolism, which were closely associated with inflammation and oxidative reaction of the host. Consequently, the effects of PCO inhibiting inflammation and edema might relate to the reducing pro-inflammatory mediators and the reverse of abnormal metabolic pathways.


Assuntos
Lesão Pulmonar Aguda , Lipopolissacarídeos , Metabolômica , Oligossacarídeos , Wolfiporia , Animais , Lesão Pulmonar Aguda/induzido quimicamente , Lesão Pulmonar Aguda/metabolismo , Lesão Pulmonar Aguda/tratamento farmacológico , Camundongos , Metabolômica/métodos , Lipopolissacarídeos/toxicidade , Oligossacarídeos/farmacologia , Masculino , Wolfiporia/química , Anti-Inflamatórios/farmacologia , Biomarcadores/sangue , Modelos Animais de Doenças , Citocinas/metabolismo , Pulmão/efeitos dos fármacos , Pulmão/metabolismo , Pulmão/patologia , Inflamação/tratamento farmacológico , Inflamação/metabolismo , Antioxidantes/farmacologia
11.
Talanta ; 279: 126542, 2024 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-39032461

RESUMO

The emission of venenous sulfur dioxide (SO2) and its derivatives from industrial applications such as coking, transportation and food processing has caused great concern about public health and environmental quality. Probes that enable sensitivity and specificity to detect SO2 derivatives play a crucial role in its regulations and finally mitigating its environmental and health impacts, but fluorescent probes that can accurately, rapidly and on-site detect SO2 derivatives in foodstuffs and environmental systems rarely reported. Herein, a near-infrared (NIR) fluorescent probe (ZTX) for the ratiometric response of bisulfite (HSO3-) was designed and synthesized by regulating the structure of high-performance HSO3- fluorescent probe SL previously reported by us based on structural analyses, theoretical calculations and related literature reports. The Michael addition reaction between the electronic-deficient C=C bond and HSO3- destroys ZTX's π-conjugation system and blocks its intramolecular charge transfer (ICT) process, resulting in a significant fading of the fuchsia solution and the bluish-purple fluorescence turned light blue fluorescence. Fluorescent imaging of HSO3- in live animals utilizing ZTX has been demonstrated. The quantitative analysis of HSO3- in food samples using ZTXvia a smartphone has been also successfully implemented. Simultaneously, the ZTX-based test strips were utilized to quantificationally determine HSO3- in environmental water samples by a smartphone. Consequently, probe ZTX could provide a new method to understand the physiopathological roles of HSO3-, evaluate food safety and monitor environment, and is promising for broad applications.

12.
Sheng Wu Gong Cheng Xue Bao ; 40(1): 15-34, 2024 Jan 25.
Artigo em Zh | MEDLINE | ID: mdl-38258629

RESUMO

Jasmonic acid (JA), a plant endogenously synthesized lipid hormone, plays an important role in response to stress. This manuscript summarized the biosynthesis and metabolism of JA and its related regulatory mechanisms, as well as the signal transduction of JA. The mechanism and regulatory network of JA in plant response to biotic and abiotic stresses were systematically reviewed, with the latest advances highlighted. In addition, this review summarized the signal crosstalk between JA and other hormones in regulating plant resistance to various stresses. Finally, the problems to be solved in the study of plant stress resistance mediated by JA were discussed, and the application of new molecular biological technologies in regulating JA signaling to enhance crop resistance was prospected, with the aim to facilitate future research and application of plant stress resistance.


Assuntos
Ciclopentanos , Transdução de Sinais , Oxilipinas , Reguladores de Crescimento de Plantas
13.
Int J Biol Macromol ; 258(Pt 1): 128822, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38114007

RESUMO

Bletilla striata polysaccharide (BP) is one of the main active ingredients in Orchidaceae plant Bletilla striata. BP has a high molecular weight, high viscosity, and complex diffusion, which is not conducive to the absorption and utilization of the human body. For the first time, we produced fermented Bletilla striata polysaccharide (FBP) with a low polymerization degree using Bacillus licheniformis BJ2022 one-step fermentation. FBP was a neutral polysaccharide with the molecular weight of 6790 Da. It was composed of glucose and mannose at a molar ratio of 1:2.7. The glycosidic bonds of FBP were composed of ß-1,4-linked mannose, ß-1,4-linked glucose and ß-1,6-linked mannose according to methylation and NMR analysis. Compared with BP, FBP has a lower viscosity and higher solubility. The scanning electron microscopy results showed that the surface of FBP was porous and honeycomb-like. The rheology properties of FBP solution were close to non-Newtonian fluid. Using in vitro fermentation, we proved that FBP could regulate human gut microbiota and significantly increase the content of Bifidobacterium and Bacteroides. Our results suggested that Bacillus licheniformis fermentation significantly improved the physical and prebiotic properties of FBP. This study provides a new strategy for developing and utilizing Bletilla striata resources in China.


Assuntos
Bacillus licheniformis , Orchidaceae , Humanos , Manose , Fermentação , Polissacarídeos/química , Orchidaceae/química , Glucose
14.
Mol Nutr Food Res ; 68(4): e2300334, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38150643

RESUMO

SCOPE: Chronic liver diseases are clinically silent and responsible for significant morbidity and mortality worldwide. Jujube has displayed various biological activities. Here, the therapeutic effect of Lactobacillus acidophilus (L. acidophilus)-fermented jujube juice (FJJ) and the possible mechanism against chronic liver injury (CLI) in mice are further studied. METHODS AND RESULTS: After the CCl4 -induced CLI mice are separately treated with L. acidophilus (LA), unfermented jujube juice (UFJJ), and FJJ, FJJ but not LA or UFJJ suppresses the liver index. By using H&E staining, immunofluorescence staining, RT-PCR, and western blotting, it is shown that LA, UFJJ, and FJJ intervention ameliorate hepatocyte necrosis, inhibit the mRNA levels of pro-inflammatory (NLRP3, Caspase-1, IL-1ß, and TNF-α) and fibrosis-associated factors (TGF-ß1, LXRα, and MMP2). Also, FJJ displays significant protection against mucosal barrier damage in CLI mice. Among the three interventions, FJJ exhibits the best therapeutic effect, followed by UFJJ and LA. Furthermore, FJJ improves dysbiosis in CLI mice. CONCLUSIONS: This study suggests that FJJ exhibits a protective effect against CCl4 -induced CLI mice by inhibiting apoptosis and oxidative stress, regulating liver lipid metabolism, and improving gut microecology. Jujube juice fermentation with L. acidophilus can be a food-grade supplement in treating CLI and related liver diseases.


Assuntos
Hepatopatias , Ziziphus , Camundongos , Animais , Lactobacillus acidophilus/metabolismo , Apoptose
15.
Am J Transl Res ; 16(4): 1454-1467, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38715834

RESUMO

BACKGROUND AND AIMS: The type X collagen gene (Col10a1), is a specific molecular marker of hypertrophic chondrocytes during endochondral ossification. Col10a1 expression is known to be influenced by many regulators. In this study, we aim to investigate how DEAD-box helicase 5 (DDX5), a potential binding factor for Col10a1 enhancer, may play a role in Col10a1 expression and chondrocyte hypertrophic differentiation in vitro. METHODS: The potential binding factors of the 150-bp Col10a1 cis-enhancer were identified with the hTFtarget database. The expression of DDX5 and COL10A1 was detected by quantitative real-time PCR (qRT-PCR) and Western blot in chondrogenic ATDC5 and MCT cell models with or without Ddx5 knockdown or overexpression. Dual-luciferase reporter assay and chromatin immunoprecipitation (ChIP) were performed to determine the interaction between DDX5 and the Col10a1 enhancer. The effect and mechanism of DDX5 on chondrocyte differentiation and maturation was evaluated by alcian blue, alkaline phosphatase (ALP), and alizarin red staining in ATDC5 cell lines with stable knockdown of Ddx5. RESULTS: DDX5 was identified as a potential binding factor for the Col10a1 enhancer. The expression of DDX5 in hypertrophic chondrocytes was higher than that in proliferative chondrocytes. Knockdown of Ddx5 decreased, while overexpression of Ddx5 slightly increased COL10A1 expression. DDX5 promotes the enhancer activity of Col10a1 as demonstrated by dual-luciferase reporter assay, and the ChIP experiment suggests a direct interaction between DDX5 and the Col10a1 enhancer. Compared to the control (NC) group, we observed weaker alcian blue and ALP staining intensity in the Ddx5 knockdown group of ATDC5 cells cultured both for 7 and 14 days. Whereas weaker alizarin red staining intensity was only found in the Ddx5 knockdown group of cells cultured for 7 days. Meanwhile, knockdown of Ddx5 significantly reduced the level of runt-related transcription factor 2 (RUNX2) in related ATDC5 cells examined. CONCLUSIONS: Our results suggest that DDX5 acts as a positive regulator for Col10a1 expression and may cooperate with RUNX2 together to control Col10a1 expression and promote the proliferation and maturation of chondrocytes.

16.
Am J Cancer Res ; 14(4): 1784-1801, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38726262

RESUMO

Chondrocyte hypertrophy and the expression of its specific marker, the collagen type X gene (COL10A1), constitute key terminal differentiation stages during endochondral ossification in long bone development. Mutations in the COL10A1 gene are known to cause schmid type metaphyseal chondrodysplasia (SMCD) and spondyloepiphyseal dyschondrodysplasia (SMD). Moreover, abnormal COL10A1 expression and aberrant chondrocyte hypertrophy are strongly correlated with skeletal diseases, notably osteoarthritis (OA) and osteosarcoma (OS). Throughout the progression of OA, articular chondrocytes undergo substantial changes in gene expression and phenotype, including a transition to a hypertrophic-like state characterized by the expression of collagen type X, matrix metalloproteinase-13, and alkaline phosphatase. This state is similar to the process of endochondral ossification during cartilage development. OS, the most common pediatric bone cancer, exhibits characteristics of abnormal bone formation alongside the presence of tumor tissue containing cartilaginous components. This observation suggests a potential role for chondrogenesis in the development of OS. A deeper understanding of the shifts in collagen X expression and chondrocyte hypertrophy phenotypes in OA or OS may offer novel insights into their pathogenesis, thereby paving the way for potential therapeutic interventions. This review systematically summarizes the findings from multiple OA models (e.g., transgenic, surgically-induced, mechanically-loaded, and chemically-induced OA models), with a particular focus on their chondrogenic and/or hypertrophic phenotypes and possible signaling pathways. The OS phenotypes and pathogenesis in relation to chondrogenesis, collagen X expression, chondrocyte (hypertrophic) differentiation, and their regulatory mechanisms were also discussed. Together, this review provides novel insights into OA and OS therapeutics, possibly by intervening the process of abnormal endochondral-like pathway with altered collagen type X expression.

17.
Small Methods ; : e2400359, 2024 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-38845084

RESUMO

To simulate biological visual systems and surpass their functions and performance, it is essential to develop high-performance optoelectronic neuromorphic electronics with broadband response, low power consumption, and fast response speed. Among these, optoelectronic synaptic transistors have emerged as promising candidates for constructing neuromorphic visual systems. In this work, flexible printed broadband (from 275 to 1050 nm) optoelectronic carbon nanotube synaptic transistors with good stability, high response speed (3.14 ms), and low-power consumption (as low as 0.1 fJ per event with the 1050 nm pulse illumination) using PbS quantum dots (QDs) modified semiconducting single-walled carbon nanotubes (sc-SWCNTs) as active layers are developed. In response to optical pulses within the ultraviolet to near-infrared wavelength range, the optoelectronic neuromorphic devices exhibit excitatory postsynaptic current, paired-pulse facilitation, and a transition from short-term plasticity to long-term plasticity, and other optical synaptic behaviors. Furthermore, a simplified neural morphology visual array is developed to simulate integrated functions such as image perception, memory, and preprocessing. More importantly, it can also emulate other complicated bionic functions, such as the infrared perception of salmon eyes and the warning behavior of reindeer in different environments. This work holds immense significance in advancing the development of artificial neural visual systems.

18.
Biomed Pharmacother ; 170: 116022, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38147734

RESUMO

This study aimed to evaluate the preventive effect of Bi Xie Fen Qing Yin (BXFQY) decoction on hyperuricemic nephropathy (HN). Using an HN mouse model induced by oral gavage of potassium oxonate and adenine, we found that BXFQY significantly reduced plasma uric acid levels and improved renal function. Further study shows that BXFQY suppressed the activation of the NLRP3 inflammasome and decreased the mRNA expressions of pro-inflammatory and fibrosis-associated factors in renal tissues of HN mice. Also, BXFQY prevented the damage to intestinal tissues of HN mice, indicative of suppressed colonic inflammation and increased gut barrier integrity. By 16 S rDNA sequencing, BXFQY significantly improved gut microbiota dysbiosis of HN mice. On the one hand, BXFQY down-regulated the abundance of some harmful bacteria, like Desulfovibrionaceae, Enterobacter, Helicobacter, and Desulfovibrio. On the other hand, BXFQY up-regulated the contents of several beneficial microbes, such as Ruminococcaceae, Clostridium sensu stricto 1, and Streptococcus. Using gas or liquid chromatography-mass spectrometry (GC/LC-MS) analysis, BXFQY reversed the changes in intestinal bacterial metabolites of HN mice, including indole and BAs. The depletion of intestinal flora from HN or HN plus BXFQY mice confirmed the significance of gut microbiota in BXFQY-initiated treatment of HN. In conclusion, BXFQY can alleviate renal inflammation and fibrosis of HN mice by modulating gut microbiota and intestinal metabolites. This study provides new insight into the underlying mechanism of BXFQY against HN.


Assuntos
Microbioma Gastrointestinal , Hiperuricemia , Camundongos , Animais , Ácido Úrico , Adenina/farmacologia , Hiperuricemia/induzido quimicamente , Hiperuricemia/tratamento farmacológico , Inflamação , Fibrose
19.
Food Funct ; 14(2): 857-873, 2023 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-36537246

RESUMO

Poria cocos, a widely accepted function food in China, has multiple pharmacological activities. This study aimed to investigate the therapeutic effect and molecular mechanism of Poria cocos oligosaccharides (PCOs) against dextran sodium sulfate (DSS)-induced mouse colitis. In this study, BALB/c mice were treated with 3% (w/v) DSS for seven days to establish a colitis model. The results showed that oral administration of PCOs (200 mg per kg per day) significantly reversed the changes in the physiological indices in colitis mice, including body weight, disease activity index scores (DAI), spleen index, and colon length. From the qRT-PCR assay, it was observed that PCOs suppressed the mRNA expression of pro-inflammatory cytokines, such as Tnf-α, Il-1ß, and Il-6. In addition, PCOs protected the intestinal barrier from damage by promoting the expression of mucins and tight junction proteins at both mRNA and protein levels. Upon 16S rDNA sequencing, it was observed that PCO treatment partly reversed the changes in the gut microbiota of colitis mice by selectively regulating the abundance of specific bacteria. And Odoribacter, Muribaculum, Desulfovibrio, Oscillibacter, Escherichia-Shigella, and Turicibacter might be the critical bacteria in improving colitis via PCOs. Finally, using antibiotic mixtures to destroy the intestinal bacteria, we documented that PCO fermentation broth (PCO FB) instead of PCOs prevented the occurrence of colitis in gut microbiota-depleted mice. In conclusion, PCOs showed a protective effect on colitis by reversing gut microbiota dysbiosis. Our study sheds light on the potential application of PCOs as a prebiotic for treating colitis.


Assuntos
Colite , Microbioma Gastrointestinal , Wolfiporia , Animais , Camundongos , Colite/induzido quimicamente , Colo/metabolismo , Citocinas/metabolismo , Sulfato de Dextrana , Dextranos , Modelos Animais de Doenças , Disbiose , Camundongos Endogâmicos C57BL , RNA Mensageiro
20.
Biomed Pharmacother ; 167: 115430, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37683590

RESUMO

Ulcerative colitis (UC) has been confirmed as a disease with a high incidence and low cure rate worldwide. In severe cases, UC can develop into colon cancer. Modern research has confirmed that berberine (BBR) can treat UC by inhibiting the expressions of inflammatory factors. However, the contribution of gut microbiota and flora metabolites in treating UC with BBR remains unclear. In this study, the ameliorative effects of BBR on gut microbiota dysbiosis and flora metabolites were investigated in a dextran sodium sulfate (DSS)-induced UC rodent model. We found that BBR significantly improved the pathological phenotype, attenuated intestinal barrier disruption, and mitigated colonic inflammation in DSS mice. By 16 S rDNA sequencing, BBR alleviated gut microbiota dysbiosis in UC mice. Moreover, the gut microbiota depletion experiment confirmed that the therapeutic effect of BBR was inextricably correlated with the gut microbiota. Besides, the flora metabolites (e.g., short-chain fatty acids, bile acids, and 5-hydroxytryptamine) were studied using HPLC-MS. The results suggested that BBR ameliorated the bile acid imbalance induced by DSS in the liver and gut. Furthermore, BBR treatment repaired gut barrier damage. The above results revealed that BBR alleviated DSS-induced UC in mice by restoring the disturbed gut microbiota, elevating unconjugated and secondary bile acids in the gastrointestinal tract, and activating the FXR and TGR5 signal pathway. This study provides novel insights into the mechanism of BBR in treating UC.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA