Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Entropy (Basel) ; 25(8)2023 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-37628188

RESUMO

This paper addresses the problem of decentralized safety control (DSC) of constrained interconnected nonlinear safety-critical systems under reinforcement learning strategies, where asymmetric input constraints and security constraints are considered. To begin with, improved performance functions associated with the actuator estimates for each auxiliary subsystem are constructed. Then, the decentralized control problem with security constraints and asymmetric input constraints is transformed into an equivalent decentralized control problem with asymmetric input constraints using the barrier function. This approach ensures that safety-critical systems operate and learn optimal DSC policies within their safe global domains. Then, the optimal control strategy is shown to ensure that the entire system is uniformly ultimately bounded (UUB). In addition, all signals in the closed-loop auxiliary subsystem, based on Lyapunov theory, are uniformly ultimately bounded, and the effectiveness of the designed method is verified by practical simulation.

2.
Entropy (Basel) ; 25(7)2023 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-37510048

RESUMO

In this paper, the safe optimal control method for continuous-time (CT) nonlinear safety-critical systems with asymmetric input constraints and unmatched disturbances based on the adaptive dynamic programming (ADP) is investigated. Initially, a new non-quadratic form function is implemented to effectively handle the asymmetric input constraints. Subsequently, the safe optimal control problem is transformed into a two-player zero-sum game (ZSG) problem to suppress the influence of unmatched disturbances, and a new Hamilton-Jacobi-Isaacs (HJI) equation is introduced by integrating the control barrier function (CBF) with the cost function to penalize unsafe behavior. Moreover, a damping factor is embedded in the CBF to balance safety and optimality. To obtain a safe optimal controller, only one critic neural network (CNN) is utilized to tackle the complex HJI equation, leading to a decreased computational load in contrast to the utilization of the conventional actor-critic network. Then, the system state and the parameters of the CNN are uniformly ultimately bounded (UUB) through the application of the Lyapunov stability method. Lastly, two examples are presented to confirm the efficacy of the presented approach.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA