Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Cell Mol Biol (Noisy-le-grand) ; 70(1): 155-163, 2024 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-38372100

RESUMO

Recent epigenetic studies have revealed a strong association between DNA methylation and aging and lifespan, which changes (increases or decreases) with age. Based on these, the construction of age prediction models associated with DNA methylation levels can be used to infer biological ages closer to the functional state of the organism. We downloaded methylation data from the Gene Expression Omnibus (GEO) public database for normal peripheral blood samples from people of different ages. We grouped the samples according to age (18-35 years and >50 years), screened the methylation sites that differed between the two groups, identified 44 differentially methylated sites, and subsequently obtained 11 age-related characteristic methylation sites using the random forest method. Then, we constructed an age classification model with these 11 characteristic methylation sites using an artificial neural network and evaluated its efficacy. The age classification model was constructed by an artificial neural network and its efficacy was evaluated. The model predicted an area under the curve (AUC) of 0.97 in the validation set and accurately distinguished between those aged 18-35 and >50 years. Furthermore, the levels of these 11 characteristic methylation sites also differed significantly between the two sets of samples in the validation set, including six newly identified age-related methylation sites (P<0.001). Finally, we constructed a multifactor regulatory network based on the corresponding genes of age-related methylation sites to reveal the transcriptional and post-transcriptional regulation patterns. As a result of the increasing problem of aging, the age classification model we constructed allows us to accurately distinguish different age groups at the molecular level, which will be more predictive than chronological age for assessing individual aging and future health status.


Assuntos
Metilação de DNA , Algoritmo Florestas Aleatórias , Humanos , Metilação de DNA/genética , Ilhas de CpG , Envelhecimento/genética , Biomarcadores , Marcadores Genéticos , Redes Neurais de Computação
2.
BMC Cancer ; 22(1): 307, 2022 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-35317758

RESUMO

BACKGROUND: The tumorigenesis of infused umbilical cord mesenchymal stem cells (UC-MSCs) is being preclinically evaluated. METHODS: We observed tumor formation in NOD SCID mice after a single subcutaneous injection of hUC-MSCs and the effect of these cells on tumor growth in tumor-bearing mice. Three generations (P5, P7, and P10) of hUC-MSCs (1 × 107) from two donors (hUC-MSC1 and hUC-MSC2) were inoculated subcutaneously into NOD SCID mice. Subcutaneous transplantation models were established in NOD SCID mice with human cervical cancer HeLa cells (solid tumor) and human B cell lymphoma Raji cells (hematological tumor). Then, the animals were euthanized, gross dissection was performed, and tissues were collected. Various organs were observed microscopically to identify pathological changes and tumor metastasis. RESULTS: In the tumorigenesis experiment, no general anatomical abnormalities were observed. In the tumor promotion experiment, some animals in the HeLa groups experienced tumor rupture, and one animal died in each of the low- and medium-dose hUC-MSC groups. The results may have occurred due to the longer feeding time, and the tumor may have caused spontaneous infection and death. Pathological examination revealed no metastasis to distant organs in any group. In the Raji tumor model, some animals in each group experienced tumor rupture, and one animal in the medium-dose hUC-MSC group died, perhaps due to increased tumor malignancy. Thus, hUC-MSCs neither promoted nor inhibited tumor growth. No cancer cell metastasis was observed in the heart, liver, spleen, lungs, kidneys or other important organs, except that pulmonary venule metastasis was observed in 1 animal in the model group. CONCLUSIONS: Injected hUC-MSCs were not tumorigenic and did not significantly promote or inhibit solid or hematological tumor growth or metastasis in NOD SCID mice.


Assuntos
Carcinogênese/patologia , Células-Tronco Mesenquimais/fisiologia , Cordão Umbilical/citologia , Animais , Feminino , Células HeLa , Humanos , Linfoma de Células B/patologia , Masculino , Camundongos Endogâmicos NOD , Camundongos SCID , Modelos Animais , Metástase Neoplásica , Células Tumorais Cultivadas
3.
Mol Cell Probes ; 50: 101502, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-31891748

RESUMO

To explore the early predictors of post-operative recurrence and metastasis of rectal cancer, analyse the associated risk, and construct a model. Retrospective collection. Four hundred patients with rectal cancer underwent surgical resection and pathological diagnosis from September 2013 to September 2014. During the post-operative period, the patients were tested by imaging examination, serum tumour markers, and routine blood follow-up for at least 3 years. Preoperative CT examination of tumour size, lymphocyte-to-neutrophil ratio, and CEA were significant biomarkers for predicting recurrence and/or metastasis of post-operative rectal cancer. The stratified threshold of the lesion size cut-off point in CT images of patients with rectal cancer was 18.75 cm3, the cut-off point value of the lymphocyte-to-neutrophil ratio was 0.33, and the CEA cut-off point value was 16.97 ng/ml. We used the cut-off point to perform stratified survival analysis to obtain two K-M curves and conduct a log-rank test. The Cox multivariate risk regression results were as follows: preoperative CT images of lesion size, lymphocyte-to-neutrophil ratio, and CEA. The AUC of the normogram model for the prediction of post-operative recurrence and metastasis of rectal cancer is 0.939. Preoperative CT examination of tumour size can predict post-operative recurrence and metastasis of rectal cancer and can be used to analyse its risk. The lymphocyte-to-neutrophil ratio and CEA can also predict post-operative tumour recurrence and metastasis risk.


Assuntos
Antígeno Carcinoembrionário/sangue , Processamento de Imagem Assistida por Computador , Linfócitos/patologia , Tomografia Computadorizada Multidetectores , Recidiva Local de Neoplasia/patologia , Neutrófilos/patologia , Neoplasias Retais/diagnóstico por imagem , Neoplasias Retais/cirurgia , Biomarcadores Tumorais/sangue , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Análise Multivariada , Metástase Neoplásica , Razão de Chances , Modelos de Riscos Proporcionais , Curva ROC , Neoplasias Retais/sangue , Reprodutibilidade dos Testes , Fatores de Risco , Carga Tumoral
4.
Cell Physiol Biochem ; 43(3): 891-904, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28957810

RESUMO

BACKGROUND/AIMS: Stem cell-based therapy is attractive in many clinical studies, but current data on the safety of stem cell applications remains inadequate. This study observed the safety, immunological effect of cynomolgus monkey umbilical cord mesenchymal stem cells (mUC-MSCs) injected into cynomolgus monkeys, in order to evaluate the safety of human umbilical cord mesenchymal stem cells (hUC-MSCs) prepared for human clinical application. METHODS: Eighteen cynomolgus monkeys were divided into three groups. Group 1 is control group, Group 2 is low-dose group, Group 3 is high-dose group. After repeated administrations of mUC-MSCs, cynomolgus monkeys were observed for possible toxic reactions. RESULTS: During the experiment, no animal died. There were no toxicological abnormalities in body weight, body temperature, electrocardiogram, coagulation and pathology. In the groups 2 and 3, AST and CK transiently increased, and serum inorganic P slightly decreased. All animals were able to recover at 28 days after the infusion was stopped. In the groups 2 and 3, CD3+ and IL-6 levels significantly increased, and recovery was after 28 days of infusion. There were no obvious pathological changes associated with the infusion of cells in the general and microscopic examinations. CONCLUSIONS: The safe dosage of repeated intravenous infusion of mUC-MSCs in cynomolgus monkeys is 1.0 × 107/kg, which is 10 times of that in clinical human use.


Assuntos
Transplante de Células-Tronco Mesenquimais/efeitos adversos , Células-Tronco Mesenquimais/citologia , Cordão Umbilical/citologia , Adipogenia , Animais , Aspartato Aminotransferases/metabolismo , Contagem de Células Sanguíneas , Peso Corporal , Complexo CD3/metabolismo , Diferenciação Celular , Células Cultivadas , Creatina Quinase/metabolismo , Feminino , Infusões Intravenosas , Interleucina-6/metabolismo , Macaca fascicularis , Masculino , Células-Tronco Mesenquimais/metabolismo , Fósforo/sangue , Linfócitos T/citologia , Linfócitos T/metabolismo , Testes de Toxicidade Crônica , Transplante Homólogo
5.
Mol Cell Probes ; 34: 1-12, 2017 08.
Artigo em Inglês | MEDLINE | ID: mdl-28400333

RESUMO

Islet transplantation is arguably one of the most promising strategies to treat patients suffering with diabetes mellitus. However, a combination of a lack of donors and chronic immune rejection limit clinical applications. Here, we evaluated the efficacy of cell therapy using islet-like cells differentiated from umbilical cord mesenchymal stem cells (UC-MSCs) of tree shrews for the treatment of type 2 diabetes. Enhanced green fluorescent protein (eGFP) labeled UC-MSCs were directly injected into type 2 diabetic tree shrews, where UC-MSC differentiated into functional islet-like cells and alleviated disease severity, as evidenced by improved biochemical features and reduced concentrations of inflammatory cytokines. We also demonstrated that in vitro culture of UC-MSCs for six days in a high-glucose environment (40 mmol/L or 60 mmol/L glucose) resulted in significant gene methylation. The potency of UC-MSCs differentiated into insulin-secreting cells was attributed to the activation of Notch signal pathways. This study provides evidence that cell therapy of islet-like cells differentiated from UC-MSCs is a feasible, simple and inexpensive approach in the treatment of type 2 diabetes.


Assuntos
Diferenciação Celular/fisiologia , Diabetes Mellitus Tipo 2/fisiopatologia , Células Secretoras de Insulina/fisiologia , Células-Tronco Mesenquimais/fisiologia , Tupaiidae/fisiologia , Cordão Umbilical/fisiologia , Animais , Células Cultivadas , Transdução de Sinais/fisiologia
6.
Ann Vasc Surg ; 41: 241-258, 2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-28163178

RESUMO

BACKGROUND: Endothelial progenitor cell (EPC) has significant age-dependent alterations in properties, but the role of Jagged1 in aging-induced decline of EPC functions remains unclear. METHODS: 2- and 20-month old healthy male Sprague-Dawley rats were used in present study. Jagged1 gene transfection was performed in EPC isolated from aged (AEPC) and young rats (YEPC), respectively. Experiments were divided into 4 groups: (1) pIRES2-EGFP (PE) group, (2) PE-combined N-[N-(3, 5-difluoro-phenacetyl)-1- alany1]-S-phenyglycine t-butyl ester (DAPT) (PE + D) group, (3) pIRES2 EGFP-Jagged1 (PEJ) group, and (4) PEJ combined DAPT (PEJ + D) group. Notch molecules were detected by real-time quantitative polymerase chain reaction or Western blotting. CD34, CD133, CD45, and KDR markers were detected by flow cytometry. EPC migration and proliferation were detected with a modified Boyden chamber and 3-(4, 5-dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium bromide assay, respectively; the tube formation ability was assayed by in vitro angiogenesis kit; EPC transfusion after Jagged1 gene transfection was performed in rat carotid artery injury models. RESULTS: Jagged1 gene transfection effectively activates notch-signaling pathway. Compared with PE groups, overexpression of Jagged1 significantly promoted AEPC functions including proliferation, migration, the tube formation ability, and cell differentiation, these effects could be reasonably diminished by DAPT. In vivo study demonstrated that Jagged1 overexpressing also significantly promoted AEPC homing to the vascular injury sites and decreases the neointima formation after vascular injury. CONCLUSIONS: Overexpression of Jagged1 ameliorates aged rat-derived EPC functions and increases its transfusion efficiency for balloon-induced rat arterial injury.


Assuntos
Angioplastia com Balão/efeitos adversos , Lesões das Artérias Carótidas/cirurgia , Artéria Carótida Primitiva/metabolismo , Células Progenitoras Endoteliais/transplante , Proteína Jagged-1/metabolismo , Neovascularização Fisiológica , Fatores Etários , Animais , Apoptose , Lesões das Artérias Carótidas/metabolismo , Lesões das Artérias Carótidas/patologia , Artéria Carótida Primitiva/patologia , Movimento Celular , Proliferação de Células , Células Cultivadas , Células Progenitoras Endoteliais/metabolismo , Proteína Jagged-1/genética , Masculino , Neointima , Ratos Sprague-Dawley , Transdução de Sinais , Fatores de Tempo , Transfecção , Regulação para Cima
7.
J Cell Biochem ; 117(3): 589-98, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26312781

RESUMO

Transplantation of hepatocytes is a promising therapy for end-stage liver disease, but the availability of functional cells currently precludes its clinical application. We now report a simple transient reprogramming approach to convert fibroblasts into hepatic-like cells. Human skin fibroblasts were treated with fish egg extracts to become the transiently remodeled cells (TRCs). After infected with retroviral EGFP, they were directly injected into the fetal monkey liver, where they underwent in situ differentiation in the hepatic niche. The hepatic-like cells were functional as shown by the synthesis of hepatic markers in vivo, including albumin, cytokeratin-18, and hepatic serum antigen. Similarly, when implanted in the mouse liver, the TRCs were differentiated into hepatic-like cells that synthesize albumin and CK18 and became completely integrated into the liver parenchyma. The potency of TRCs was mechanistically related to the activation of several signal pathways, which reactivate endogenous genes related to cell potency. This study demonstrates the feasibility of a simple and inexpensive epigenetic remodeling approach to convert human fibroblasts into therapeutic hepatic-like cells for the treatment of end-stage liver disease.


Assuntos
Fibroblastos/fisiologia , Animais , Células Cultivadas , Reprogramação Celular , Feminino , Fibroblastos/transplante , Hepatócitos/metabolismo , Humanos , Queratina-18/metabolismo , Fígado/citologia , Regeneração Hepática , Macaca mulatta , Masculino , Camundongos Endogâmicos BALB C , Células-Tronco Pluripotentes/metabolismo , Células-Tronco Pluripotentes/transplante , Transdução de Sinais , Pele/citologia
8.
J Cardiovasc Pharmacol ; 68(1): 67-73, 2016 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-27002278

RESUMO

The dysfunction of endothelial progenitor cells (EPCs) was found to be associated with vascular complications in diabetes mellitus (DM) patients. Previous studies found that regular exercise could improve the function of EPCs in DM patients, but the underling mechanism was unclear. Irisin, a newly identified myokine, was induced by exercise and has been demonstrated to mediate some of the positive effects of exercise. In this study, we hypothesize that irisin may have direct effects on EPC function in DM mice. These data showed for the first time that irisin increased the number of EPCs in peripheral blood of DM mice and improved the function of EPCs derived from DM mice bone marrow. The mechanism for the effect of irisin is related to the PI3K/Akt/eNOS pathway. Furthermore, irisin was demonstrated to improve endothelial repair in DM mice that received EPC transplants after carotid artery injury. The results of this study indicate a novel effect of irisin in regulating the number and function of EPCs via the PI3K/Akt/eNOS pathway, suggesting a potential for the administration of exogenous irisin as a succedaneum to improve EPC function in diabetic patients who fail to achieve such improvements through regular exercise.


Assuntos
Diabetes Mellitus Experimental/tratamento farmacológico , Células Progenitoras Endoteliais/efeitos dos fármacos , Fibronectinas/farmacologia , Animais , Artérias Carótidas/metabolismo , Artérias Carótidas/patologia , Lesões das Artérias Carótidas/metabolismo , Lesões das Artérias Carótidas/patologia , Lesões das Artérias Carótidas/terapia , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Células Cultivadas , Diabetes Mellitus Experimental/metabolismo , Células Progenitoras Endoteliais/metabolismo , Células Progenitoras Endoteliais/transplante , Masculino , Camundongos Endogâmicos C57BL , Neointima , Óxido Nítrico Sintase Tipo III/metabolismo , Fosfatidilinositol 3-Quinase/metabolismo , Fosforilação , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais/efeitos dos fármacos
9.
Cell Mol Biol Lett ; 20(3): 404-17, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26208388

RESUMO

Multipotent stem cells have potential therapeutic roles in the treatment of Duchenne muscular dystrophy (DMD). However, the limited access to stem cell sources restricts their clinical application. To address this issue, we established a simple in vitro epigenetic reprogramming technique in which skin fibroblasts are induced to dedifferentiate into multipotent cells. In this study, human fibroblasts were isolated from circumcised adult foreskin and were reprogrammed by co-culture for 72 h with fish oocyte extract (FOE) in serum-free medium. The cells were then observed and analyzed by immunofluorescence staining, flow cytometry and in vitro differentiation assays. Then FOE-treated human fibroblasts were transplanted by tail vein injection into irradiated mdx mice, an animal model of DMD. Two months after injection, the therapeutic effects of FOE-treated fibroblasts on mdx skeletal muscle were evaluated by serum creatine kinase (CK) activity measurements and by immunostaining and RT-PCR of human dystrophin expression. The results indicated that the reprogrammed fibroblasts expressed higher levels of the pluripotent antigen markers SSEA-4, Nanog and Oct-4, and were able to differentiate in vitro into adipogenic cells, osteoblastic cells, and myotube-like cells. Tail vein injection of FOE-treated fibroblasts into irradiated mdx mice slightly reduced serum CK activity and the percentage of centrally nucleated myofibers two months after cell transplantation. Furthermore, we confirmed human dystrophin protein and mRNA expression in mdx mouse skeletal muscle. These data demonstrated that FOE-treated fibroblasts were multipotent and could integrate into mdx mouse myofibers through the vasculature.


Assuntos
Técnicas de Reprogramação Celular/métodos , Reprogramação Celular/genética , Fibroblastos/metabolismo , Células-Tronco Multipotentes/metabolismo , Adulto , Animais , Extratos Celulares/farmacologia , Transplante de Células/métodos , Células Cultivadas , Meios de Cultura Livres de Soro/farmacologia , Distrofina/genética , Distrofina/metabolismo , Feminino , Fibroblastos/efeitos dos fármacos , Fibroblastos/transplante , Peixes/metabolismo , Prepúcio do Pênis/citologia , Humanos , Injeções Intravenosas , Masculino , Camundongos Endogâmicos mdx , Microscopia de Fluorescência , Células-Tronco Multipotentes/efeitos dos fármacos , Células-Tronco Multipotentes/transplante , Distrofia Muscular Animal/genética , Distrofia Muscular Animal/metabolismo , Distrofia Muscular Animal/terapia , Distrofia Muscular de Duchenne/genética , Distrofia Muscular de Duchenne/metabolismo , Distrofia Muscular de Duchenne/terapia , Miofibrilas/metabolismo , Oócitos/química , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Transplante Heterólogo
10.
Cytotherapy ; 16(12): 1739-49, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25442501

RESUMO

BACKGROUND AIMS: Embryonic-like stem cells (ELSCs) express embryonic stem cell-specific marker genes, such as SSEA-4, Oct-4 and Nanog, and can be induced to differentiate into cells of all 3 germ layers. Our preliminary data showed that ELSCs isolated from human bone marrow express multipotent antigen markers and differentiate into multinucleated myotube-like cells more efficiently than do mesenchymal stromal cells (MSCs) isolated from the same source. We investigated the therapeutic effect of ELSCs in dystrophin/utrophin double knock-out (dko) mice, one of the Duchenne muscular dystrophy animal models, by systemically transplanting them through tail-vein injection. METHODS: ELSCs and MSCs were both isolated from human bone marrow. Two months after equal amounts of ELSCs or MSCs were injected through tail-vein injection, we evaluated skeletal muscle motor function and serum creatine kinase activity and measured dystrophin expression by means of immunostaining, Western blotting and semi-quantitative reverse transcriptase-polymerase chain reaction. RESULTS: ELSCs positive for Oct-4 and Nanog-3 expressed higher levels of SSEA-4, FZD-9 and CD105 and were induced to differentiate into myotube-like cells more efficiently than did MSCs in vitro. Transplantation of ELSCs through the tail vein improved motor function and decreased serum creatine kinase activity at 2 months after cell transplantation. In addition, dystrophin protein and messenger RNA were upregulated and the skeletal muscle histology was improved in these dko mice transplanted with ELSCs. CONCLUSIONS: ELSCs could be more efficiently induced to differentiate into myotubes than were MSCs in vitro, and systematically transplanting ELSCs improved muscle motor function and muscle histology in dko mice.


Assuntos
Células da Medula Óssea/metabolismo , Distrofina/deficiência , Células-Tronco Embrionárias/metabolismo , Distrofia Muscular de Duchenne/terapia , Transplante de Células-Tronco , Utrofina/deficiência , Animais , Antígenos de Diferenciação/biossíntese , Células da Medula Óssea/patologia , Modelos Animais de Doenças , Células-Tronco Embrionárias/patologia , Feminino , Humanos , Masculino , Camundongos , Camundongos Endogâmicos mdx , Camundongos Knockout , Distrofia Muscular de Duchenne/genética , Distrofia Muscular de Duchenne/metabolismo , Distrofia Muscular de Duchenne/patologia
11.
Stem Cell Res Ther ; 15(1): 14, 2024 01 08.
Artigo em Inglês | MEDLINE | ID: mdl-38191526

RESUMO

BACKGROUND: Recent studies have shown that umbilical cord mesenchymal stem cells have an anti-aging effect in ovaries, but the cellular and molecular mechanisms of HA-MSC ovarian anti-aging remain to be studied. Therefore, we conducted a 10X Genomics single-nucleus transcriptome sequencing experiment on the ovaries of macaque monkeys after HA-MSC treatment. METHODS: The results of cell subgroup classification were visualized by 10X Genomics single nuclear transcriptome sequencing. The aging model of hGCs was established, and the migration ability of the cells was determined after coculture of HA-MSCs and aging hGCs. The genes screened by single nuclear transcriptional sequencing were verified in vitro by qPCR. RESULTS: Compared with the aging model group, the number of cell receptor pairs in each subgroup of the HA-MSC-treated group increased overall. Treatment with 200 µmol/L H2O2 for 48 h was used as the optimum condition for the induction of hGC senescence. After coculture of noncontact HA-MSCs with senescent hGCs, it was found that HA-MSCs can reverse the cell structure, proliferation ability, senescence condition, expression level of senescence-related genes, and expression level of key genes regulating the senescence pathway in normal hGCs. CONCLUSIONS: HA-MSC therapy can improve the tissue structure and secretion function of the ovary through multiple cellular and molecular mechanisms to resist ovarian aging. In vitro validation experiments further supported the results of single-cell sequencing, which provides evidence supporting a new option for stem cell treatment of ovarian senescence.


Assuntos
Células-Tronco Mesenquimais , Ovário , Feminino , Animais , Macaca mulatta , Peróxido de Hidrogênio , Envelhecimento
12.
NPJ Regen Med ; 9(1): 20, 2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38729990

RESUMO

Aging is the main cause of many degenerative diseases. The skin is the largest and the most intuitive organ that reflects the aging of the body. Under the interaction of endogenous and exogenous factors, there are cumulative changes in the structure, function, and appearance of the skin, which are characterized by decreased synthesis of collagen and elastin, increased wrinkles, relaxation, pigmentation, and other aging characteristics. skin aging is inevitable, but it can be delayed. The successful isolation of mesenchymal stromal cells (MSC) in 1991 has greatly promoted the progress of cell therapy in human diseases. The International Society for Cellular Therapy (ISCT) points out that the MSC is a kind of pluripotent progenitor cells that have self-renewal ability (limited) in vitro and the potential for mesenchymal cell differentiation. This review mainly introduces the role of perinatal umbilical cord-derived MSC(UC-MSC) in the field of skin rejuvenation. An in-depth and systematic understanding of the mechanism of UC-MSCs against skin aging is of great significance for the early realization of the clinical transformation of UC-MSCs. This paper summarized the characteristics of skin aging and summarized the mechanism of UC-MSCs in skin rejuvenation reported in recent years. In order to provide a reference for further research of UC-MSCs to delay skin aging.

13.
Aging (Albany NY) ; 16(8): 7009-7021, 2024 04 17.
Artigo em Inglês | MEDLINE | ID: mdl-38637117

RESUMO

BACKGROUND: Reduced numbers and dysfunction of thymic epithelial cells (TECs) are important factors of thymic degeneration. Previous studies have found that umbilical cord mesenchymal stem cells (UCMSCs) reverse the structure and function of the senescent thymus in vivo. However, the transcriptomic regulation mechanism is unclear. METHODS: TECs were cultured with H2O2 for 72 hours to induce senescence. UCMSCs were cocultured with senescent TECs for 48 hours to detect SA-ß-gal, P16 and Ki67. The cocultured TECs were collected for lncRNA, mRNA and miRNA sequencing to establish a competitive endogenous regulatory network (ceRNA). And RT-qPCR, immunofluorescence staining, and western blot were used to identified key genes. RESULTS: Our results showed that H2O2 induced TEC aging and that UCMSCs reversed these changes. Compared with those in aged TECs, 2260 DE mRNAs, 1033 DE lncRNAs and 67 DE miRNAs were differentially expressed, and these changes were reversed by coculturing the cells with UCMSCs. Differential mRNA enrichment analysis of ceRNA regulation revealed that the PI3K-AKT pathway was a significant signaling pathway. UCMSC coculture upregulated VEGFA, which is the upstream factor of the PI3K-AKT signaling pathway, and the expression of the key proteins PI3K and AKT. Thus, the expression of the cell cycle suppressor P27, which is downstream of the PI3K-AKT signaling pathway, was downregulated, while the expression of the cell cycle regulators CDK2 and CCNE was upregulated. CONCLUSION: UCMSC coculture upregulated the expression of VEGFA, activated the PI3K-AKT signaling pathway, increased the expression of CDK2 and CCNE, decreased the expression of P27, and promoted the proliferation of TECs.


Assuntos
Senescência Celular , Técnicas de Cocultura , Células Epiteliais , Perfilação da Expressão Gênica , Células-Tronco Mesenquimais , MicroRNAs , Proteínas Oncogênicas , Timo , Cordão Umbilical , Células-Tronco Mesenquimais/metabolismo , Humanos , Células Epiteliais/metabolismo , Cordão Umbilical/citologia , Timo/citologia , Timo/metabolismo , MicroRNAs/metabolismo , MicroRNAs/genética , Quinase 2 Dependente de Ciclina/metabolismo , Quinase 2 Dependente de Ciclina/genética , Ciclina E/metabolismo , Ciclina E/genética , Biomarcadores/metabolismo , Peróxido de Hidrogênio/toxicidade , Peróxido de Hidrogênio/farmacologia , Transdução de Sinais , Fator A de Crescimento do Endotélio Vascular/metabolismo , Fator A de Crescimento do Endotélio Vascular/genética , Fosfatidilinositol 3-Quinases/metabolismo , Células Cultivadas , Proteínas Proto-Oncogênicas c-akt/metabolismo , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Transcriptoma , Inibidor de Quinase Dependente de Ciclina p27/metabolismo , Inibidor de Quinase Dependente de Ciclina p27/genética
14.
Regen Ther ; 25: 1-9, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38108044

RESUMO

With the rapid development of society and the economy, population aging has become a common challenge faced by many countries in the world today. Structural and functional changes in the cardiovascular system can occur with age, increasing the incidence and severity of cardiovascular diseases in older adults. Due to the limited regenerative capacity of myocardial cells, myocardial infarction and its resulting heart failure and congenital heart disease have become the number one killer of human health. At present, the treatment of cardiovascular diseases includes drug therapy and nondrug therapy. Nondrug therapy mainly includes minimally invasive interventional therapy, surgical diagnosis and treatment, and cell therapy. Long-term drug treatment may cause headache due to vasodilation, lower blood pressure, digestive system dysfunction and other side effects. Surgical treatment is traumatic, difficult to treat, and expensive. In recent years, stem cell therapy has exhibited broad application prospects in basic and clinical research on cardiovascular disease because of its plasticity, self-renewal and multidirectional differentiation potential. Therefore, this paper looks at stem cell therapy for diseases, reviews recent advances in the mechanism and clinical transformation of cardiovascular aging and related diseases in China, and briefly discusses the development trend and future prospects of cardiovascular aging research.

15.
Artigo em Inglês | MEDLINE | ID: mdl-38357953

RESUMO

Background: Osteoporosis increases bone brittleness and the risk of fracture. Umbilical cord mesenchymal stem cell (UCMSC) treatment is effective, but how to improve the biological activity and clinical efficacy of UCMSCs has not been determined. METHODS: A rat model of osteoporosis was induced with dexamethasone sodium phosphate. Highly active umbilical cord mesenchymal stem cells (HA-UCMSCs) and UCMSCs were isolated, cultured, identified, and infused intravenously once at a dose of 2.29 × 106 cells/kg. In the 4th week of treatment, bone mineral density (BMD) was evaluated via cross-micro-CT, tibial structure was observed via HE staining, osteogenic differentiation of bone marrow mesenchymal stem cells (BMMSCs) was examined via alizarin red staining, and carboxy-terminal cross-linked telopeptide (CTX), nuclear factor-κß ligand (RANKL), procollagen type 1 N-terminal propeptide (PINP) and osteoprotegerin (OPG) levels were investigated via enzyme-linked immunosorbent assays (ELISAs). BMMSCs were treated with 10-6 mol/L dexamethasone and cocultured with HA-UCMSCs and UCMSCs in transwells. The osteogenic and adipogenic differentiation of BMMSCs was subsequently examined through directional induction culture. The protein expression levels of WNT, ß-catenin, RUNX2, IFN-γ and IL-17 in the bone tissue were measured via Western blotting. RESULTS: The BMD in the healthy group was higher than that in the model group. Both UCMSCs and HA-UCMSCs exhibited a fusiform morphology; swirling growth; high expression of CD73, CD90 and CD105; and low expression of CD34 and CD45 and could differentiate into adipocytes, osteoblasts and chondrocytes, while HA-UCMSCs were smaller in size; had a higher nuclear percentage; and higher differentiation efficiency. Compared with those in the model group, the BMD increased, the bone structure improved, the trabecular area, number, and perimeter increased, the osteogenic differentiation of BMMSCs increased, RANKL expression decreased, and PINP expression increased after UCMSC and HA-UCMSC treatment for 4 weeks. Furthermore, the BMD, trabecular area, number and perimeter, calcareous nodule counts, and OPG/RANKL ratio were higher in the HA-UCMSC treatment group than in the UCMSC treatment group. The osteogenic and adipogenic differentiation of dexamethasone-treated BMMSCs was enhanced after the coculture of UCMSCs and HA-UCMSCs, and the HA-UCMSC group exhibited better effects than the UCMSC coculture group. The protein expression of WNT, ß-catenin, and runx2 was upregulated, and IFN-γ and IL-17 expression was downregulated after UCMSC and HA-UCMSC treatment. CONCLUSION: HA-UCMSCs have a stronger therapeutic effect on osteoporosis compared with that of UCMSCs. These effects include an improved bone structure, increased BMD, an increased number and perimeter of trabeculae, and enhanced osteogenic differentiation of BMMSCs via activation of the WNT/ß-catenin pathway and inhibition of inflammation.

.

16.
Regen Ther ; 27: 126-169, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38571892

RESUMO

Background: A decrease in the number and activity of thymic epithelial cells (TECs) is an important factor in thymic degeneration. Mesenchymal stem cells (MSCs) treating thymic ageing is a promising strategy, but the DNA methylation modification mechanism in TECs remains unclear. Methods: Aged rhesus monkeys were treated with MSCs to establish a thymic senescence model, and hematoxylin-eosin (HE) staining, immunofluorescence staining, and ELISA were performed to observe the structure and function of the thymus. TEC aging model and MSCs co-culture system were established to detect DNA methylation modification and transcriptomic changes, correlation analysis between transcription factor methylation and mRNA expression, and q-PCR, immunofluorescence staining, and Western blot were used to identified key genes. Results: MSCs improved the structure and function of thymus in elderly macaque monkeys; reduced the expression levels of ß-Gal, P16, and P21; and increased the activity of aging TECs. There were 501 genes with increased methylation in the promoter region in the treated group compared with the untreated group, among which 23 genes were involved in the negative regulation of cell growth, proliferation and apoptosis, while 591 genes had decreased methylation, among which 37 genes were associated with promoting cell growth and proliferation and inhibiting apoptosis. Furthermore, 66 genes showed a negative correlation between promoter methylation levels and gene transcription; specifically, PDE5A, DUOX2, LAMP1 and SVIL were downregulated with increased methylation, inhibiting growth and development, while POLR3G, PGF, CHTF18, KRT17, FOXJ1, NGF, DYRK3, LRP8, CDT1, PRELID1, F2R, KNTC1 and TRIM3 were upregulated with decreased methylation, promoting cell growth. Conclusion: MSCs improve the structure and function of aged thymus, which involves the regulation of DNA methylation profiles and a decrease in the methylation level of the transcription factor NGF to specifically upregulate KRT17 and FOXJ1 to promote the proliferation of TECs.

17.
Cell Biol Int ; 37(6): 624-32, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23483723

RESUMO

We have examined the effects of induced autologous stem cells on blood sugar levels in a rabbit model of type 1 diabetes. Rabbit skin fibroblasts were induced to dedifferentiate into multipotent stem cells, and were transplanted into the treatment group via the pancreatic artery. After the fibroblasts had been induced for 72 h, some of them became multipotent stem cells. Four weeks after cell transplantation, blood glucose levels of the induced stem cell treatment group were significantly lower. The plasma insulin and plasma C-peptide levels of the treated group were significantly increased (P < 0.05). The shape and number of islets was different. In the control group, induced cell treatment group and non-induced cell treatment group. In the control group, islet ß-cell nucleoli were obvious, and cell volumes were larger with more abundant cytoplasm. The rough endoplasmic reticulum was well-developed and a large number of secretory granules could be seen within the cytoplasm. In the induced cell treatment group, islet ß cells were scattered, and their nuclei were oval and slightly irregular in shape. The cytoplasm of these cells contained a nearly normal number of secretory granules. In the non-induced cell treatment group, islet ß-cells were atrophied and cell volumes were reduced. Cytoplasmic endocrine granules were significantly reduced or absent. In conclusion, treatment with induced multipotent stem cells can reduce blood sugar levels, improve islet cell function, and repair damaged pancreas in a rabbit model of type 1 diabetes.


Assuntos
Diabetes Mellitus Experimental/terapia , Diabetes Mellitus Tipo 1/terapia , Transplante de Células-Tronco , Animais , Glicemia/metabolismo , Diabetes Mellitus Experimental/metabolismo , Feminino , Insulina/sangue , Ilhotas Pancreáticas/metabolismo , Masculino , Coelhos , Transplante Autólogo
18.
Curr Stem Cell Res Ther ; 18(4): 499-512, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-35770394

RESUMO

BACKGROUND: Intestinal disease is a common disease, which can cause serious digestion and absorption disorders, endanger the lives of patients and seriously affect the quality of life of people. Finding an effective treatment is a difficult problem at present, and stem cell therapy as a treatment has high application potential in intestinal-related diseases. PURPOSE: This paper mainly summarizes the mechanism, research progress and future development trend of stem cells in the treatment of intestinal diseases in the past decade, hoping to provide a reference for future researchers in the research and application of stem cells and intestinal diseases. METHODS: Stem cells, inflammatory bowel diseases, Crohn's disease, radiation-induced intestinal injury, radiation enterocolitis, and extracellular vesicles were used as search terms. Relevant references in the past ten years were searched in CNKI journal full-text database, PubMed database, VIP network and Wanfang medical network, and 80 literature studies meeting the requirements were finally included for review. RESULTS: This paper summarizes the research and application of stem cells in intestinal diseases from 2012 to 2021, and expounds on the specific mechanism of stem cells in the treatment of intestinal diseases. It has been found that stem cells can treat intestinal injury or inflammation in different ways. CONCLUSION: Future stem cells may also be used to reverse the natural aging of intestinal function, improve intestinal function, and strengthen gastrointestinal function.


Assuntos
Doença de Crohn , Doenças Inflamatórias Intestinais , Humanos , Qualidade de Vida , Doença de Crohn/tratamento farmacológico , Doenças Inflamatórias Intestinais/terapia , Transplante de Células-Tronco , Inflamação
19.
Stem Cell Rev Rep ; 19(4): 953-967, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36609903

RESUMO

BACKGROUND: Ovarian ageing causes endocrine disturbances and the degeneration of systemic tissue and organ functions to seriously affect women's physical and mental health, and effective treatment methods are urgently needed. Based on our previous studies using juvenile rhesus monkey bone marrow mesenchymal stem cells (BMMSCs) to treat ovarian ageing in rhesus monkey, we found that BMMSCs improved ovarian structure and function. This study continues to explore the mechanism by which BMMSCs reversed granulosa cell (GC) ageing. METHODS: A GC ageing model and coculture system of BMMSCs were established, changes in the level of the N6-methyladenosine (m6A) methylation modification were detected, m6A-modified RNA immunoprecipitation sequencing (MeRIP-seq) were performed, correlations between m6A peaks and mRNA expression were determined, and the expression of hub genes was identified using Q-PCR, immunofluorescence staining, and western blot. RESULTS: Our results showed that H2O2 successfully induced GC ageing and that BMMSCs reversed measures of GC ageing. BMMSCs increased the expression of the FTO protein and reduced the overall level of m6A. We identified 797 m6A peaks (348 hypomethylated and 449 hypermethylated peaks) and 817 differentially expressed genes (DEGs) (412 upregulated and 405 downregulated) after aged GCs were cocultured with BMMSCs, which significantly associated with ovarian function and epigenetic modification. The epigenetic repressive mark and important cell cycle regulator lysine demethylase 8 (KDM8) was downregulated at both the mRNA and protein levels, histone H3 was upregulated in aged GCs after BMMSC coculture, and KDM8 was upregulated after FTO was inhibited through FB23. CONCLUSIONS: Our study revealed an essential role for m6A in BMMSCs in reversing GC ageing, and FTO regulated KDM8 mediates histone H3 changes may as a novel regulatory mechanism in BMMSCs to reverse GC ageing.


Assuntos
Histonas , Células-Tronco Mesenquimais , Feminino , Animais , Metilação , Peróxido de Hidrogênio , Macaca mulatta , Envelhecimento/genética , Células da Granulosa , RNA
20.
Curr Stem Cell Res Ther ; 18(3): 391-400, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-35996242

RESUMO

OBJECTIVE: The aim of the study was to reveal the changes in serum protein composition and content in macaques during the process of ageing, and explore the effect of bone marrow mesenchymal stem cell (BMMSC) on the serum protein expression profile in elderly macaques. METHODS: Naturally ageing macaques were assessed according to age. BMMSCs were intravenously infused into aged macaques. In addition, peripheral blood was collected to obtain serum for dataindependent acquisition (DIA) protein sequencing to identify aging-related indicators. One hundred eighty days after macaques received BMMSC treatment, haemoxylin and eosin (HE) staining was performed to observe the morphology and structure of aortic arches. RESULTS: Compared to infant and young control macaques, aged macaques showed erythema on the face, dry skin, reduced amounts of hair on the head and back, and paleness. Cultured BMMSCs from the 4th passage (P4 BMMSCs) were grown in accordance with standards used to culture mesenchymal stem cells. After BMMSC treatment, the assessed aortic arches showed no calcium salt deposition or cell necrosis, and the characteristics of the serum protein expression profile tended to be similar to that of the infant and young groups, with the expression of 41 proteins upregulated with age and that of 30 proteins downregulated with age but upregulated after BMMSC treatment. Moreover, we identified 44 significantly differentially expressed proteins between the aged model and treatment groups; 11 of the upregulated proteins were related to vascular ageing, neuronal ageing and haematopoiesis, and 33 of the downregulated proteins were associated with neuronal ageing, cardiovascular disease, and tumours. Interestingly, S100 expression in serum was significantly decreased, COMP expression was significantly increased, NKAP expression reappeared, and LCN2, CSF1R, CORO1C, CSTB and RSU-1 expression disappeared after BMMSC treatment. CONCLUSION: BMMSCs can reverse ageing-related serum protein expression.


Assuntos
Transplante de Células-Tronco Mesenquimais , Células-Tronco Mesenquimais , Humanos , Necrose , Células da Medula Óssea , Proteínas Repressoras
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA