Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
1.
Nano Lett ; 24(22): 6585-6591, 2024 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-38785400

RESUMO

The gallium-doped hafnium oxide (Ga-HfO2) films with different Ga doping concentrations were prepared by adjusting the HfO2/Ga2O3 atomic layer deposition cycle ratio for high-speed and low-voltage operation in HfO2-based ferroelectric memory. The Ga-HfO2 ferroelectric films reveal a finely modulated coercive field (Ec) from 1.1 (HfO2/Ga2O3 = 32:1) to an exceptionally low 0.6 MV/cm (HfO2/Ga2O3 = 11:1). This modulation arises from the competition between domain nucleation and propagation speed during polarization switching, influenced by the intrinsic domain density and phase dispersion in the film with specific Ga doping concentrations. Higher Ec samples exhibit a nucleation-dominant switching mechanism, while lower Ec samples undergo a transition from a nucleation-dominant to a propagation-dominant reversal mechanism as the electric field increases. This work introduces Ga as a viable dopant for low Ec and offers insights into material design strategies for HfO2-based ferroelectric memory applications.

2.
Acta Pharmacol Sin ; 45(11): 2253-2266, 2024 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-38914676

RESUMO

Methamphetamine (METH), an abused psychostimulant, impairs cognition through prolonged or even single-dose exposure, but animal experiments have shown contradictory effects on memory deficits. In this study we investigated the effects and underlying mechanisms of single-dose METH administration on the retrieval of object recognition memory (ORM) in mice. We showed that single-dose METH administration (2 mg/kg, i.p.) significantly impaired ORM retrieval in mice. Fiber photometry recording in METH-treated mice revealed that the activity of prelimbic cortex glutamatergic neurons (PrLGlu) was significantly reduced during ORM retrieval. Chemogenetic activation of PrLGlu or glutamatergic projections from ventral CA1 to PrL (vCA1Glu-PrL) rescued ORM retrieval impairment. Fiber photometry recording revealed that dopamine (DA) levels in PrL of METH-treated mice were significantly increased, and micro-infusion of the D2 receptor (D2R) antagonist sulpiride (0.25 µg/side) into PrL rescued ORM retrieval impairment. Whole-cell recordings in brain slices containing the PrL revealed that PrLGlu intrinsic excitability and basal glutamatergic synaptic transmission were significantly reduced in METH-treated mice, and the decrease in intrinsic excitability was reversed by micro-infusion of Sulpiride into PrL in METH-treated mice. Thus, the impaired ORM retrieval caused by single-dose METH administration may be attributed to reduced PrLGlu activity, possibly due to excessive DA activity on D2R. Selective activation of PrLGlu or vCA1Glu-PrL may serve as a potential therapeutic strategy for METH-induced cognitive dysfunction.


Assuntos
Dopamina , Metanfetamina , Camundongos Endogâmicos C57BL , Animais , Metanfetamina/administração & dosagem , Metanfetamina/farmacologia , Dopamina/metabolismo , Masculino , Camundongos , Estimulantes do Sistema Nervoso Central/farmacologia , Estimulantes do Sistema Nervoso Central/administração & dosagem , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Ácido Glutâmico/metabolismo , Receptores de Dopamina D2/metabolismo , Reconhecimento Psicológico/efeitos dos fármacos , Sulpirida/farmacologia , Sulpirida/administração & dosagem , Antagonistas dos Receptores de Dopamina D2/farmacologia , Antagonistas dos Receptores de Dopamina D2/administração & dosagem , Córtex Pré-Frontal/efeitos dos fármacos , Córtex Pré-Frontal/metabolismo
3.
Cancer Sci ; 114(7): 2882-2894, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37137487

RESUMO

ANP32B, a member of the acidic leucine-rich nuclear phosphoprotein 32 kDa (ANP32) family of proteins, is critical for normal development because its constitutive knockout mice are perinatal lethal. It is also shown that ANP32B acts as a tumor-promoting gene in some kinds of cancer such as breast cancer and chronic myelogenous leukemia. Herein, we observe that ANP32B is lowly expressed in B-cell acute lymphoblastic leukemia (B-ALL) patients, which correlates with poor prognosis. Furthermore, we utilized the N-myc or BCR-ABLp190 -induced B-ALL mouse model to investigate the role of ANP32B in B-ALL development. Intriguingly, conditional deletion of Anp32b in hematopoietic cells significantly promotes leukemogenesis in two B-ALL mouse models. Mechanistically, ANP32B interacts with purine rich box-1 (PU.1) and enhances the transcriptional activity of PU.1 in B-ALL cells. Overexpression of PU.1 dramatically suppresses B-ALL progression, and highly expressed PU.1 significantly reverses the accelerated leukemogenesis in Anp32b-deficient mice. Collectively, our findings identify ANP32B as a suppressor gene and provide novel insight into B-ALL pathogenesis.


Assuntos
Linfoma de Burkitt , Leucemia Mieloide , Leucemia-Linfoma Linfoblástico de Células Precursoras , Animais , Camundongos , Proteínas Nucleares/genética , Camundongos Knockout , Leucemia-Linfoma Linfoblástico de Células Precursoras/genética , Proteínas de Fusão bcr-abl , Proteínas do Tecido Nervoso/metabolismo , Proteínas de Ciclo Celular/metabolismo
4.
Blood ; 138(24): 2485-2498, 2021 12 16.
Artigo em Inglês | MEDLINE | ID: mdl-34359074

RESUMO

Proper regulation of p53 signaling is critical for the maintenance of hematopoietic stem cells (HSCs) and leukemic stem cells (LSCs). The hematopoietic cell-specific mechanisms regulating p53 activity remain largely unknown. Here, we demonstrate that conditional deletion of acidic leucine-rich nuclear phosphoprotein 32B (ANP32B) in hematopoietic cells impairs repopulation capacity and postinjury regeneration of HSCs. Mechanistically, ANP32B forms a repressive complex with p53 and thus inhibits the transcriptional activity of p53 in hematopoietic cells, and p53 deletion rescues the functional defect in Anp32b-deficient HSCs. Of great interest, ANP32B is highly expressed in leukemic cells from patients with chronic myelogenous leukemia (CML). Anp32b deletion enhances p53 transcriptional activity to impair LSC function in a murine CML model and exhibits synergistic therapeutic effects with tyrosine kinase inhibitors in inhibiting CML propagation. In summary, our findings provide a novel strategy to enhance p53 activity in LSCs by inhibiting ANP32B and identify ANP32B as a potential therapeutic target in treating CML.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Leucemia Mielogênica Crônica BCR-ABL Positiva/patologia , Células-Tronco Neoplásicas/patologia , Proteínas do Tecido Nervoso/metabolismo , Proteínas Nucleares/metabolismo , Proteína Supressora de Tumor p53/metabolismo , Animais , Proteínas de Ciclo Celular/genética , Células Cultivadas , Regulação Leucêmica da Expressão Gênica , Células-Tronco Hematopoéticas/metabolismo , Células-Tronco Hematopoéticas/patologia , Leucemia Mielogênica Crônica BCR-ABL Positiva/genética , Leucemia Mielogênica Crônica BCR-ABL Positiva/metabolismo , Camundongos , Células-Tronco Neoplásicas/metabolismo , Proteínas do Tecido Nervoso/genética , Proteínas Nucleares/genética , Proteína Supressora de Tumor p53/genética
5.
Mol Psychiatry ; 26(8): 3956-3969, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-31772302

RESUMO

Social interaction and communication are evolutionary conserved behaviours that are developed in mammals to establish partner cognition. Deficit in sociability has been represented in human patients and animal models of neurodevelopmental disorders, which are connected with genetic variants of synaptic glutamate receptors and associated PDZ-binding proteins. However, it remains elusive how these key proteins are specialized in the cellular level for the initial social behaviour during postnatal developmental stage. Here we identify a hippocampal CA3 specifically expressed PDZ scaffold protein Lnx1 required for initial social behaviour. Through gene targeting we find that Lnx1 deficiency led to a hippocampal subregional disorder in neuronal activity and social memory impairments for partner discrimination observed in juvenile mice which also show cognitive defects in adult stage. We further demonstrate that Lnx1 deletion causes NMDA receptor (NMDAR) hypofunction and this is attributable to decreased GluN2B expression in PSD compartment and disruption of the Lnx1-NMDAR-EphB2 complex. Specific restoration of Lnx1 or EphB2 protein in the CA3 area of Lnx1-/- mice rescues the defective synaptic function and social memory. These findings thus reveal crucial roles of postsynaptic NMDAR multiprotein complex that regulates the formation of initial social memory during the adolescent period.


Assuntos
Região CA3 Hipocampal/fisiologia , Memória , Receptores de N-Metil-D-Aspartato , Comportamento Social , Ubiquitina-Proteína Ligases , Animais , Transtornos da Memória/genética , Camundongos , Receptores de N-Metil-D-Aspartato/genética , Receptores de N-Metil-D-Aspartato/metabolismo , Transdução de Sinais , Ubiquitina-Proteína Ligases/metabolismo
6.
J Neurosci ; 36(39): 10151-62, 2016 09 28.
Artigo em Inglês | MEDLINE | ID: mdl-27683910

RESUMO

UNLABELLED: The amygdala serves as emotional center to mediate innate fear behaviors that are reflected through neuronal responses to environmental aversive cues. However, the molecular mechanism underlying the initial neuron responses is poorly understood. In this study, we monitored the innate defensive responses to aversive stimuli of either elevated plus maze or predator odor in juvenile mice and found that glutamatergic neurons were activated in amygdala. Loss of EphB2, a receptor tyrosine kinase expressed in amygdala neurons, suppressed the reactions and led to defects in spine morphogenesis and fear behaviors. We further found a coupling of spinogenesis with these threat cues induced neuron activation in developing amygdala that was controlled by EphB2. A constitutively active form of EphB2 was sufficient to rescue the behavioral and morphological defects caused by ablation of ephrin-B3, a brain-enriched ligand to EphB2. These data suggest that kinase-dependent EphB2 intracellular signaling plays a major role for innate fear responses during the critical developing period, in which spinogenesis in amygdala glutamatergic neurons was involved. SIGNIFICANCE STATEMENT: Generation of innate fear responses to threat as an evolutionally conserved brain feature relies on development of functional neural circuit in amygdala, but the molecular mechanism remains largely unknown. We here identify that EphB2 receptor tyrosine kinase, which is specifically expressed in glutamatergic neurons, is required for the innate fear responses in the neonatal brain. We further reveal that EphB2 mediates coordination of spinogenesis and neuron activation in amygdala during the critical period for the innate fear. EphB2 catalytic activity plays a major role for the behavior upon EphB-ephrin-B3 binding and transnucleus neuronal connections. Our work thus indicates an essential synaptic molecular signaling within amygdala that controls synapse development and helps bring about innate fear emotions in the postnatal developing brain.


Assuntos
Tonsila do Cerebelo/fisiologia , Medo/fisiologia , Glutamatos/metabolismo , Instinto , Neurogênese/fisiologia , Neurônios/fisiologia , Receptor EphB2/metabolismo , Envelhecimento/fisiologia , Animais , Mecanismos de Defesa , Regulação da Expressão Gênica no Desenvolvimento/fisiologia , Camundongos , Camundongos Knockout , Camundongos Transgênicos , Transdução de Sinais/fisiologia
7.
Nat Commun ; 15(1): 3221, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38622129

RESUMO

The hippocampus creates a cognitive map of the external environment by encoding spatial and self-motion-related information. However, it is unclear whether hippocampal neurons could also incorporate internal cognitive states reflecting an animal's exploratory intention, which is not driven by rewards or unexpected sensory stimuli. In this study, a subgroup of CA1 neurons was found to encode both spatial information and animals' investigatory intentions in male mice. These neurons became active before the initiation of exploration behaviors at specific locations and were nearly silent when the same fields were traversed without exploration. Interestingly, this neuronal activity could not be explained by object features, rewards, or mismatches in environmental cues. Inhibition of the lateral entorhinal cortex decreased the activity of these cells during exploration. Our findings demonstrate that hippocampal neurons may bridge external and internal signals, indicating a potential connection between spatial representation and intentional states in the construction of internal navigation systems.


Assuntos
Intenção , Navegação Espacial , Masculino , Camundongos , Animais , Percepção Espacial/fisiologia , Hipocampo/fisiologia , Córtex Entorrinal , Sinais (Psicologia) , Navegação Espacial/fisiologia
8.
Zool Res ; 45(3): 679-690, 2024 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-38766749

RESUMO

General anesthesia is widely applied in clinical practice. However, the precise mechanism of loss of consciousness induced by general anesthetics remains unknown. Here, we measured the dynamics of five neurotransmitters, including γ-aminobutyric acid, glutamate, norepinephrine, acetylcholine, and dopamine, in the medial prefrontal cortex and primary visual cortex of C57BL/6 mice through in vivo fiber photometry and genetically encoded neurotransmitter sensors under anesthesia to reveal the mechanism of general anesthesia from a neurotransmitter perspective. Results revealed that the concentrations of γ-aminobutyric acid, glutamate, norepinephrine, and acetylcholine increased in the cortex during propofol-induced loss of consciousness. Dopamine levels did not change following the hypnotic dose of propofol but increased significantly following surgical doses of propofol anesthesia. Notably, the concentrations of the five neurotransmitters generally decreased during sevoflurane-induced loss of consciousness. Furthermore, the neurotransmitter dynamic networks were not synchronized in the non-anesthesia groups but were highly synchronized in the anesthetic groups. These findings suggest that neurotransmitter dynamic network synchronization may cause anesthetic-induced loss of consciousness.


Assuntos
Anestésicos Inalatórios , Camundongos Endogâmicos C57BL , Neurotransmissores , Propofol , Sevoflurano , Sevoflurano/farmacologia , Animais , Propofol/farmacologia , Neurotransmissores/metabolismo , Camundongos , Anestésicos Inalatórios/farmacologia , Anestésicos Intravenosos/farmacologia , Masculino , Córtex Pré-Frontal/efeitos dos fármacos , Córtex Pré-Frontal/metabolismo
9.
Cell Rep ; 43(8): 114548, 2024 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-39052482

RESUMO

Human cortical neurons (hCNs) exhibit high dendritic complexity and synaptic density, and the maturation process is greatly protracted. However, the molecular mechanism governing these specific features remains unclear. Here, we report that the hominoid-specific gene TBC1D3 promotes dendritic arborization and protracts the pace of synaptogenesis. Ablation of TBC1D3 in induced hCNs causes reduction of dendritic growth and precocious synaptic maturation. Forced expression of TBC1D3 in the mouse cortex protracts synaptic maturation while increasing dendritic growth. Mechanistically, TBC1D3 functions via interaction with MICAL1, a monooxygenase that mediates oxidation of actin filament. At the early stage of differentiation, the TBC1D3/MICAL1 interaction in the cytosol promotes dendritic growth via F-actin oxidation and enhanced actin dynamics. At late stages, TBC1D3 escorts MICAL1 into the nucleus and downregulates the expression of genes related with synaptic maturation through interaction with the chromatin remodeling factor ATRX. Thus, this study delineates the molecular mechanisms underlying human neuron development.


Assuntos
Proteínas dos Microfilamentos , Transdução de Sinais , Sinapses , Humanos , Animais , Sinapses/metabolismo , Camundongos , Proteínas dos Microfilamentos/metabolismo , Proteínas dos Microfilamentos/genética , Proteínas Ativadoras de GTPase/metabolismo , Proteínas Ativadoras de GTPase/genética , Actinas/metabolismo , Neurônios/metabolismo , Dendritos/metabolismo , DNA Helicases/metabolismo , Neurogênese , Oxigenases de Função Mista/metabolismo , Oxigenases de Função Mista/genética , Diferenciação Celular , Calponinas
10.
Sci Rep ; 14(1): 20417, 2024 09 03.
Artigo em Inglês | MEDLINE | ID: mdl-39223229

RESUMO

Currently, the relationship between axial rotation of the vertebrae and bone mineral density (BMD) measured by dual-energy X-ray absorptiometry (DXA) and quantitative computed tomography (QCT) remains controversial. The aim of this study is to quantitatively assess the effect of vertebral rotation on volumetric bone mineral density (v-BMD) and areal bone mineral density (a-BMD), further to propose the corrected strategies. To achieve this, a phantom, which was rotated from 0° to 25° in 5° increments, was utilized. Bone mineral content (BMC), a-BMD, v-BMD, and projected area (p-AREA) were measured. The Kruskal-Wallis non-parametric test or one-way ANOVA was used to examine the differences in variables between the different groups. The Pearson and Spearman correlation was used to test the relationships between quantitative parameters and rotated angles. Linear regression analysis was used to evaluate the relationship between angles and quantitative parameters. The findings indicate that, as the angle increased, a-BMD and v-BMD decreased (P < 0.001) , and the p-AREA increased (P < 0.001), but the BMC stays constant. The rotated angle was negative correlated (r = - 0.925, P < 0.001) with a-BMD and v-BMD (r = - 0.880, P < 0.001), positive (r = 0.930, P = < 0.001) correlated with p-AREA. The linear regression analysis showed that a-BMD = 0.808-0.01 × Angle and v-BMD = 151.808-1.588 × Angle. This study showed that, axial rotation might lead to a lower measured for a-BMD and v-BMD, it should be modified. This gives clinicians some insights into how to deal with osteoporosis in scoliosis patients. It's essential for clinicians to incorporate these findings into their diagnostic processes to prevent potential misdiagnosis and over-treatment of osteoporosis.


Assuntos
Absorciometria de Fóton , Densidade Óssea , Vértebras Lombares , Tomografia Computadorizada por Raios X , Humanos , Vértebras Lombares/diagnóstico por imagem , Vértebras Lombares/fisiologia , Tomografia Computadorizada por Raios X/métodos , Rotação , Imagens de Fantasmas
11.
Aging Cell ; 23(8): e14187, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38716507

RESUMO

Behavioral changes or neuropsychiatric symptoms (NPSs) are common features in dementia and are associated with accelerated cognitive impairment and earlier deaths. However, how NPSs are intertwined with cognitive decline remains elusive. In this study, we identify that the basolateral amygdala (BLA) is a key brain region that is associated with mood disorders and memory decline in the AD course. During the process from pre- to post-onset in AD, the dysfunction of parvalbumin (PV) interneurons and pyramidal neurons in the amygdala leads to hyperactivity of pyramidal neurons in the basal state and insensitivity to external stimuli. We further demonstrate that serotonin (5-HT) receptors in distinct neurons synergistically regulate the BLA microcircuit of AD rather than 5-HT levels, in which both restrained inhibitory inputs by excessive 5-HT1AR signaling in PV interneurons and depolarized pyramidal neurons via upregulated 5-HT2AR contribute to aberrant neuronal hyperactivity. Downregulation of these two 5-HT receptors simultaneously enables neurons to resist ß-amyloid peptides (Aß) neurotoxicity and ameliorates the mood and cognitive defects. Therefore, our study reveals a crucial role of 5-HT receptors for regulating neuronal homeostasis in AD pathogenesis, and this would provide early intervention and potential targets for AD cognitive decline.


Assuntos
Doença de Alzheimer , Receptores de Serotonina , Doença de Alzheimer/metabolismo , Doença de Alzheimer/patologia , Animais , Receptores de Serotonina/metabolismo , Camundongos , Masculino , Tonsila do Cerebelo/metabolismo , Neurônios/metabolismo , Humanos , Homeostase , Interneurônios/metabolismo , Afeto , Camundongos Endogâmicos C57BL , Complexo Nuclear Basolateral da Amígdala/metabolismo
12.
J Hematol Oncol ; 16(1): 9, 2023 02 11.
Artigo em Inglês | MEDLINE | ID: mdl-36774506

RESUMO

BACKGROUND: Selectively targeting leukemia stem cells (LSCs) is a promising approach in treating acute myeloid leukemia (AML), for which identification of such therapeutic targets is critical. Increasing lines of evidence indicate that FBXO22 plays a critical role in solid tumor development and therapy response. However, its potential roles in leukemogenesis remain largely unknown. METHODS: We established a mixed lineage leukemia (MLL)-AF9-induced AML model with hematopoietic cell-specific FBXO22 knockout mice to elucidate the role of FBXO22 in AML progression and LSCs regulation, including self-renewal, cell cycle, apoptosis and survival analysis. Immunoprecipitation combined with liquid chromatography-tandem mass spectrometry analysis, Western blotting and rescue experiments were performed to study the mechanisms underlying the oncogenic role of FBXO22. RESULTS: FBXO22 was highly expressed in AML, especially in MLL-rearranged (MLLr) AML. Upon FBXO22 knockdown, human MLLr leukemia cells presented markedly increased apoptosis. Although conditional deletion of Fbxo22 in hematopoietic cells did not significantly affect the function of hematopoietic stem cells, MLL-AF9-induced leukemogenesis was dramatically abrogated upon Fbxo22 deletion, together with remarkably reduced LSCs after serial transplantations. Mechanistically, FBXO22 promoted degradation of BACH1 in MLLr AML cells, and overexpression of BACH1 suppressed MLLr AML progression. In line with this, heterozygous deletion of BACH1 significantly reversed delayed leukemogenesis in Fbxo22-deficient mice. CONCLUSIONS: FBXO22 promotes MLLr AML progression by targeting BACH1 and targeting FBXO22 might be an ideal strategy to eradicate LSCs without influencing normal hematopoiesis.


Assuntos
Fatores de Transcrição de Zíper de Leucina Básica , Proteínas F-Box , Leucemia Mieloide Aguda , Receptores Citoplasmáticos e Nucleares , Animais , Humanos , Camundongos , Fatores de Transcrição de Zíper de Leucina Básica/genética , Fatores de Transcrição de Zíper de Leucina Básica/metabolismo , Ciclo Celular , Proteínas F-Box/genética , Proteínas F-Box/metabolismo , Células-Tronco Hematopoéticas/metabolismo , Leucemia Mieloide Aguda/patologia , Camundongos Knockout , Proteína de Leucina Linfoide-Mieloide/metabolismo , Células-Tronco Neoplásicas/patologia , Receptores Citoplasmáticos e Nucleares/metabolismo
13.
Neuron ; 111(10): 1626-1636.e6, 2023 05 17.
Artigo em Inglês | MEDLINE | ID: mdl-36917979

RESUMO

Lasker's award-winning drug propofol is widely used in general anesthesia. The recreational use of propofol is reported to produce a well-rested feeling and euphoric state; yet, the neural mechanisms underlying such pleasant effects remain unelucidated. Here, we report that propofol actively and directly binds to the dopamine transporter (DAT), but not the serotonin transporter (SERT), which contributes to the rapid relief of anhedonia. Then, we predict the binding mode of propofol by molecular docking and mutation of critical binding residues on the DAT. Fiber photometry recording on awake freely moving mice and [18F] FP-CIT-PET scanning further establishes that propofol administration evokes rapid and lasting dopamine accumulation in nucleus accumbens (NAc). The enhanced dopaminergic tone drives biased activation of dopamine-receptor-1-expressing medium spiny neurons (D1-MSNs) in NAc and reverses anhedonia in chronically stressed animals. Collectively, these findings suggest the therapeutic potential of propofol against anhedonia, which warrants future clinical investigations.


Assuntos
Dopamina , Propofol , Camundongos , Animais , Dopamina/metabolismo , Propofol/farmacologia , Propofol/metabolismo , Proteínas da Membrana Plasmática de Transporte de Dopamina/metabolismo , Simulação de Acoplamento Molecular , Receptores de Dopamina D1/metabolismo , Núcleo Accumbens/fisiologia , Anedonia , Camundongos Endogâmicos C57BL
14.
Neuropharmacology ; 220: 109259, 2022 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-36126726

RESUMO

Somatic symptom disorder (SSD), which occurs in about 5-7 percent of the adult population, involves heightened physical and emotional sensitivity to pain. However, its neural mechanism remains elusive and thus hinders effective clinical intervention. In this study, we employed chronic restraint stress (CRS)-induced hyperalgesia as a mouse model to investigate the neural mechanism underlying SSD and its pharmacological treatment. We found that CRS induced hyperactivity of anterior cingulate cortex (ACC), whereas chemogenetic inhibition of such hyperactivity could prevent CRS-induced hyperalgesia. Systematic application and ACC local infusion of fluoxetine alleviated CRS-induced hyperalgesia. Moreover, we found that fluoxetine exerted its anti-hyperalgesic effects through inhibiting the hyperactivity of ACC and upregulating 5-HT1A receptors. Our study thus uncovers the functional role of 5-HT signaling in modulating pain sensation and provides a neural basis for developing precise clinical intervention for SSD.


Assuntos
Fluoxetina , Hiperalgesia , Animais , Fluoxetina/farmacologia , Fluoxetina/uso terapêutico , Giro do Cíngulo , Hiperalgesia/tratamento farmacológico , Camundongos , Dor/tratamento farmacológico , Serotonina
15.
Transl Neurodegener ; 9(1): 18, 2020 05 12.
Artigo em Inglês | MEDLINE | ID: mdl-32398165

RESUMO

BACKGROUND: Neuropsychiatric symptoms (NPS) such as depression, anxiety, apathy, and irritability occur in prodromal phases of clinical Alzheimer's disease (AD), which might be an increased risk for later developing AD. Here we treated young APP/PS1 AD model mice prophylactically with serotonin-selective re-uptake inhibitor (SSRI) paroxetine and investigated the protective role of anti-depressant agent in emotional abnormalities and cognitive defects during disease progress. METHODS: To investigate the protective role of paroxetine in emotional abnormalities and cognitive defects during disease progress, we performed emotional behaviors of 3 months old APP/PS1 mouse following oral administration of paroxetine prophylactically starting at 1 month of age. Next, we tested the cognitive, biochemical and pathological, effects of long term administration of paroxetine at 6 months old. RESULTS: Our results showed that AD mice displayed emotional dysfunction in the early stage. Prophylactic administration of paroxetine ameliorated the initial emotional abnormalities and preserved the eventual memory function in AD mice. CONCLUSION: Our data indicate that prophylactic administration of paroxetine ameliorates the emotional dysfunction and memory deficit in AD mice. These neuroprotective effects are attributable to functional restoration of glutamate receptor (GluN2A) in AD mice.


Assuntos
Sintomas Afetivos/tratamento farmacológico , Doença de Alzheimer/tratamento farmacológico , Transtornos da Memória/tratamento farmacológico , Fármacos Neuroprotetores/uso terapêutico , Paroxetina/uso terapêutico , Sintomas Prodrômicos , Sintomas Afetivos/genética , Sintomas Afetivos/metabolismo , Doença de Alzheimer/genética , Doença de Alzheimer/metabolismo , Precursor de Proteína beta-Amiloide/genética , Animais , Transtornos da Memória/genética , Transtornos da Memória/metabolismo , Camundongos , Camundongos Transgênicos , Fármacos Neuroprotetores/metabolismo , Paroxetina/metabolismo , Presenilina-1/genética , Receptores de N-Metil-D-Aspartato/metabolismo , Inibidores Seletivos de Recaptação de Serotonina/metabolismo , Inibidores Seletivos de Recaptação de Serotonina/uso terapêutico , Fatores de Tempo
16.
Cell Death Dis ; 10(7): 486, 2019 06 19.
Artigo em Inglês | MEDLINE | ID: mdl-31217475

RESUMO

Liver kinase B1 (LKB1) regulates both cell growth and energy metabolism. Inactivated mutations of LKB1, observed in 20-30% of nonsmall cell lung cancers (NSCLC), contribute significantly to lung cancer malignancy progression. However, the upstream signalings regulating LKB1 activity remain incompletely understood. Here, we present evidence that FBXO22 interacts with and promotes polyubiquitination of LKB1. More intriguingly, FBXO22 mediates Lys-63-linked LKB1 polyubiquitination and inhibits kinase activity of LKB1. Furthermore, over-expression of FBXO22 promotes NSCLC cell growth through inhibiting LKB1-AMPK-mTOR signaling in vitro and in vivo. Clinically, FBXO22 is highly expressed in human lung adenocarcinoma and high FBXO22 expression predicts significant poor prognosis. Our study provides new insights into the upstream regulation of LKB1 activation and identifies FBXO22 as a potential therapeutic target for lung cancer treatment.


Assuntos
Carcinoma Pulmonar de Células não Pequenas/metabolismo , Proteínas F-Box/metabolismo , Neoplasias Pulmonares/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Receptores Citoplasmáticos e Nucleares/metabolismo , Células A549 , Quinases Proteína-Quinases Ativadas por AMP , Proteínas Quinases Ativadas por AMP , Animais , Carcinoma Pulmonar de Células não Pequenas/genética , Linhagem Celular Tumoral , Proliferação de Células/genética , Proliferação de Células/fisiologia , Ensaio de Unidades Formadoras de Colônias , Proteínas F-Box/genética , Feminino , Células HEK293 , Células HeLa , Humanos , Immunoblotting , Imuno-Histoquímica , Imunoprecipitação , Neoplasias Pulmonares/genética , Camundongos , Camundongos Nus , Proteínas Serina-Treonina Quinases/genética , Receptores Citoplasmáticos e Nucleares/genética , Transdução de Sinais/genética , Transdução de Sinais/fisiologia , Ubiquitinação/genética , Ubiquitinação/fisiologia
17.
Nan Fang Yi Ke Da Xue Xue Bao ; 38(3): 296-304, 2018 Mar 20.
Artigo em Zh | MEDLINE | ID: mdl-29643035

RESUMO

OBJECTIVE: To analyze the correlation between the expressions of vascular endothelial growth factor (VEGF) and transient receptor potential canonical 6 (TRPC6) and their role in podocyte injury in rats with diabetic nephropathy. METHODS: Forty SD rats with diabetic nephropathy induced by intraperitoneal injection of 65 mg/kg streptozotocin were randomized equally into 5 groups, including a diabetic nephropathy model group and 4 treatment groups, with 8 normal SD rats as the normal control group. In the 4 treatment groups, the rats received intraperitoneal injections with SU5416 at 5 mg/kg or 10 mg/kg twice a week or with LY294002 at 1 mg/kg or 2 mg/kg once daily for 8 weeks. Blood glucose, serum creatinine, blood urea nitrogen, and 24-h urinary protein levels of the rats were detected at different time points, and the pathologies in the renal tissue were observed using HE staining, PAS staining and immunohistochemistry. The expressions of VEGF, nephrin, and TRPC6 at mRNA and protein levels were detected using RT-PCR and Western blotting. RESULTS: Compared with normal control rats, the diabetic rats showed significantly increased fasting blood glucose, serum creatinine, blood urea nitrogen and 24-h urinary protein levels with decreased expressions of nephrin mRNA and protein (P<0.05) and increased expressions of VEGF and TRPC6 (P<0.05). Compared with the untreated diabetic rats, the rats with SU5416 treatment showed increased 24-h urinary protein, urea nitrogen, and nephrin expression and decreased TRPC6 expression without significant changes in fasting blood glucose, serum creatinine, or VEGF expression. The rats treated with LY294002 showed decreased 24-h urinary protein and TRPC6 expression without significant changes in fasting blood glucose, serum creatinine, urea nitrogen, or expressions of nephrin and VEGF. CONCLUSION: The regulatory effect of VEGF on TRPC6 can be blocked by inhibiting VEGFR-2 or blocking PI3K/Akt signaling pathway.


Assuntos
Nefropatias Diabéticas/patologia , Podócitos/patologia , Canais de Cátion TRPC/metabolismo , Fator A de Crescimento do Endotélio Vascular/metabolismo , Animais , Cromonas/farmacologia , Diabetes Mellitus Experimental , Nefropatias Diabéticas/metabolismo , Indóis/farmacologia , Rim/fisiopatologia , Proteínas de Membrana/metabolismo , Morfolinas/farmacologia , Pirróis/farmacologia , Distribuição Aleatória , Ratos , Ratos Sprague-Dawley
18.
J Cell Biol ; 217(11): 4007-4024, 2018 11 05.
Artigo em Inglês | MEDLINE | ID: mdl-30185604

RESUMO

Neuronal connections are initiated by axon targeting to form synapses. However, how the maturation of axon terminals is modulated through interacting with postsynaptic elements remains elusive. In this study, we find that ligand of Numb protein X 1 (Lnx1), a postsynaptic PDZ protein expressed in hippocampal CA3 pyramidal neurons, is essential for mossy fiber (MF) axon targeting during the postnatal period. Lnx1 deletion causes defective synaptic arrangement that leads to aberrant presynaptic terminals. We further identify EphB receptors as novel Lnx1-binding proteins to form a multiprotein complex that is stabilized on the CA3 neuron membrane through preventing proteasome activity. EphB1 and EphB2 are independently required to transduce distinct signals controlling MF pruning and targeting for precise DG-CA3 synapse formation. Furthermore, constitutively active EphB2 kinase rescues structure of the wired MF terminals in Lnx1 mutant mice. Our data thus define a retrograde trans-synaptic regulation required for integration of post- and presynaptic structure that participates in building hippocampal neural circuits during the adolescence period.


Assuntos
Axônios/metabolismo , Região CA3 Hipocampal/metabolismo , Fibras Musgosas Hipocampais/metabolismo , Células Piramidais/metabolismo , Sinapses/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Animais , Camundongos , Camundongos Knockout , Terminações Pré-Sinápticas/metabolismo , Receptor EphB1/genética , Receptor EphB1/metabolismo , Receptor EphB2/genética , Receptor EphB2/metabolismo , Sinapses/genética , Ubiquitina-Proteína Ligases/genética
19.
Sci Rep ; 7: 40614, 2017 01 17.
Artigo em Inglês | MEDLINE | ID: mdl-28094295

RESUMO

Traumatic brain injury (TBI) is a principal cause of death and disability worldwide, which is a major public health problem. Death caused by TBI accounts for a third of all damage related illnesses, which 75% TBI occurred in low and middle income countries. With the increasing use of motor vehicles, the incidence of TBI has been at a high level. The abnormal brain functions of TBI patients often show the acute and long-term neurological dysfunction, which mainly associated with the pathological process of malignant brain edema and neuroinflammation in the brain. Owing to the neuroinflammation lasts for months or even years after TBI, which is a pivotal causative factor that give rise to neurodegenerative disease at late stage of TBI. Studies have shown that platelet activating factor (PAF) inducing inflammatory reaction after TBI could not be ignored. The morphological and behavioral abnormalities after TBI in wild type mice are rescued by general knockout of PAFR gene that neuroinflammation responses and cognitive ability are improved. Our results thus define a key inflammatory molecule PAF that participates in the neuroinflammation and helps bring about cerebral dysfunction during the TBI acute phase.


Assuntos
Lesões Encefálicas Traumáticas/etiologia , Lesões Encefálicas Traumáticas/fisiopatologia , Inflamação/genética , Glicoproteínas da Membrana de Plaquetas/genética , Receptores Acoplados a Proteínas G/genética , Animais , Astrócitos/metabolismo , Citocinas/genética , Citocinas/metabolismo , Modelos Animais de Doenças , Marcação de Genes , Hipocampo/metabolismo , Hipocampo/patologia , Hipocampo/ultraestrutura , Mediadores da Inflamação/metabolismo , Masculino , Memória , Camundongos , Camundongos Knockout , Neuroglia/metabolismo , Aprendizagem Espacial
20.
Nat Commun ; 7: 11096, 2016 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-27008987

RESUMO

Innate emotion response to environmental stimuli is a fundamental brain function that is controlled by specific neural circuits. Dysfunction of early emotional circuits may lead to neurodevelopmental disorders such as autism and schizophrenia. However, how the functional circuits are formed to prime initial emotional behaviours remain elusive. We reveal here using gene-targeted mutations an essential role for ephrin-B3 ligand-like activity in the development of innate fear in the neonatal brain. We further demonstrate that ephrin-B3 controls axon targeting and coordinates spinogenesis and neuronal activity within the amygdala. The morphological and behavioural abnormalities in ephrin-B3 mutant mice are rescued by conditional knock-in of wild-type ephrin-B3 during the critical period when axon targeting and fear responses are initiated. Our results thus define a key axonal molecule that participates in the wiring of amygdala circuits and helps bring about fear emotion during the important adolescence period.


Assuntos
Tonsila do Cerebelo/metabolismo , Axônios/metabolismo , Efrina-B3/metabolismo , Medo/fisiologia , Instinto , Neurogênese , Animais , Núcleo Celular/metabolismo , Efrina-B3/genética , Camundongos , Mutação/genética , Sinapses/metabolismo , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA