Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Environ Manage ; 319: 115678, 2022 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-35842990

RESUMO

Revealing the patterns and their mechanisms of microbial community in water transfer projects, especially in inter-basin water transfer projects, is the premise of biohazard warning, water quality monitoring and sustainable management of water resources. Using a river and impounded lakes from the eastern route of South-to-North Water Transfer project as a model system, we studied the diversity and assembly patterns of bacterial communities in artificially connected ecosystems and their influencing factors. Our results showed that water quality improved during the water transfer period (WTP). Further, the latitudinal pattern of bacterioplankton was reversed, which was mainly due to the change of evenness caused by water transfer and had no significant correlation with water quality parameters. Importantly, the spatial heterogeneity of the bacterial communities decreased during the WTP, and the differences in the communities between the impounded lakes and river was more significant in the non-water transfer period (NWTP) than in the WTP, which was the result of water transfer and water quality. Overall, bacterial community was largely shaped by stochastic processes. The bacterial communities had a higher migration rate during the WTP than during the NWTP. We believe that the water transfer increased the risk of biological homogenization while improving water quality. Combined, our work systematically discusses the microbial community pattern and mechanism in the inter-basin water transfer project, providing theoretical support for inter-basin water transfer project planning management and ecological environment protection.


Assuntos
Microbiota , Qualidade da Água , Bactérias , China , Lagos , Rios/microbiologia , Recursos Hídricos
2.
J Agric Food Chem ; 67(18): 5250-5264, 2019 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-31008599

RESUMO

Cytosine DNA methylation plays an important role in plants: it can mediate gene expression to affect plant growth and development. However, little is known about the potential involvement of cytosine DNA methylation in apple trees as well as in response to alternate bearing. Here, we performed whole-genome bisulfate sequencing to investigate genomic CG, CHG, and CHH methylation patterns, together with their global mRNA accumulation and small RNA expression in "Fuji" apple trees. Results showed that "Fuji" apple trees have a higher CHH methylation than Arabidopsis. Moreover, genomic methylation analysis revealed that CG and CHG methylation were robustly maintained at the early stage of flower induction. Additionally, differentially methylated regions (DMRs), including hypermethylated and hypomethylated DMRs, were also characterized in alternate bearing (AB) apple trees. Intriguingly, the DMRs were enriched in hormones, redox state, and starch and sucrose metabolism, which affected flowering. Further global gene expression evaluation based on methylome analysis revealed a negative correlation between gene body methylation and gene expression. Subsequent small RNA analyses showed that 24-nucleotide small interfering RNAs were activated and maintained in non-CG methylated apple trees. Our whole-genome DNA methylation analysis and RNA and small RNA expression profile construction provide valuable information for future studies.


Assuntos
Citosina/metabolismo , Malus/genética , RNA Mensageiro/genética , RNA Interferente Pequeno/genética , Metilação de DNA , Regulação da Expressão Gênica de Plantas , Malus/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , RNA Mensageiro/metabolismo , RNA Interferente Pequeno/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA