Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Nat Commun ; 15(1): 5669, 2024 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-38971836

RESUMO

Reducing water scarcity requires both mitigation of the increasing water pollution and adaptation to the changing availability and demand of water resources under global change. However, state-of-the-art water scarcity modeling efforts often ignore water quality and associated biogeochemical processes in the design of water scarcity reduction measures. Here, we identify cost-effective options for reducing future water scarcity by accounting for water quantity and quality in the highly water stressed and polluted Pearl River Basin in China under various socio-economic and climatic change scenarios based on the Shared Socio-economic Pathways (SSPs) and Representative Concentration Pathways (RCPs). Our modeling approach integrates a nutrient model (MARINA-Nutrients) with a cost-optimization procedure, considering biogeochemistry and human activities on land in a spatially explicit way. Results indicate that future water scarcity is expected to increase by a factor of four in most parts of the Pearl River Basin by 2050 under the RCP8.5-SSP5 scenario. Results also show that water quality management options could half future water scarcity in a cost-effective way. Our analysis could serve as an example of water scarcity assessment for other highly water stressed and polluted river basins around the world and inform the design of cost-effective measures to reduce water scarcity.

2.
J Control Release ; 367: 61-75, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38242210

RESUMO

Pyroptosis, mediated by gasdermin proteins, has shown excellent efficacy in facilitating cancer immunotherapy. The strategies commonly used to induce pyroptosis suffer from a lack of tissue specificity, resulting in the nonselective activation of pyroptosis and consequent systemic toxicity. Moreover, pyroptosis activation usually depends on caspase, which can induce inflammation and metabolic disorders. In this study, inspired by the tumor-specific expression of SRY-box transcription factor 4 (Sox4) and matrix metalloproteinase 2 (MMP2), we constructed a doubly regulated plasmid, pGMD, that expresses a biomimetic gasdermin D (GSDMD) protein to induce the caspase-independent pyroptosis of tumor cells. To deliver pGMD to tumor cells, we used a hyaluronic acid (HA)-shelled calcium carbonate nanoplatform, H-CNP@pGMD, which effectively degrades in the acidic endosomal environment, releasing pGMD into the cytoplasm of tumor cells. Upon the initiation of Sox4, biomimetic GSDMD was expressed and cleaved by MMP2 to induce tumor-cell-specific pyroptosis. H-CNP@pGMD effectively inhibited tumor growth and induced strong immune memory effects, preventing tumor recurrence. We demonstrate that H-CNP@pGMD-induced biomimetic GSDMD expression and tumor-specific pyroptosis provide a novel approach to boost cancer immunotherapy.


Assuntos
Neoplasias , Piroptose , Humanos , Metaloproteinase 2 da Matriz/metabolismo , Gasderminas , Biomimética , Peptídeos e Proteínas de Sinalização Intracelular/genética , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Proteínas de Neoplasias/metabolismo , Proteínas de Neoplasias/farmacologia , Caspases/metabolismo , Caspases/farmacologia , Neoplasias/terapia
3.
ACS Nano ; 18(9): 6946-6962, 2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38377037

RESUMO

Pyroptosis mediated by gasdermin protein has shown great potential in cancer immunotherapies. However, the low expression of gasdermin proteins and the systemic toxicity of nonspecific pyroptosis limit its clinical application. Here, we designed a synthetic biology strategy to construct a tumor-specific pyroptosis-inducing nanoplatform M-CNP/Mn@pPHS, in which a pyroptosis-inducing plasmid (pPHS) was loaded onto a manganese (Mn)-doped calcium carbonate nanoparticle and wrapped in a tumor-derived cell membrane. M-CNP/Mn@pPHS showed an efficient tumor targeting ability. After its internalization by tumor cells, the degradation of M-CNP/Mn@pPHS in the acidic endosomal environment allowed the efficient endosomal escape of plasmid pPHS. To trigger tumor-specific pyroptosis, pPHS was designed according to the logic "AND gate circuit" strategy, with Hif-1α and Sox4 as two input signals and gasdermin D induced pyroptosis as output signal. Only in cells with high expression of Hif-1α and Sox4 simultaneously will the output signal gasdermin D be expressed. Since Hif-1α and Sox4 are both specifically expressed in tumor cells, M-CNP/Mn@pPHS induces the tumor-specific expression of gasdermin D and thus pyroptosis, triggering an efficient immune response with little systemic toxicity. The Mn2+ released from the nanoplatform further enhanced the antitumor immune response by stimulating the cGAS-STING pathway. Thus, M-CNP/Mn@pPHS efficiently inhibited tumor growth with 79.8% tumor regression in vivo. We demonstrate that this logic "AND gate circuit"-based gasdermin nanoplatform is a promising strategy for inducing tumor-specific pyroptosis with little systemic toxicity.


Assuntos
Neoplasias , Piroptose , Humanos , Gasderminas , Peptídeos e Proteínas de Sinalização Intracelular , Neoplasias/terapia , Imunoterapia , Lógica
4.
J Control Release ; 373: 568-582, 2024 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-39067792

RESUMO

Cancer vaccine is regarded as an effective immunotherapy approach mediated by dendritic cells (DCs) which are crucial for antigen presentation and the initiation of adaptive immune responses. However, lack of DC-targeting properties significantly hampers the efficacy of cancer vaccines. Here, by using the phage display technique, peptides targeting the endocytic receptor DEC-205 primarily found on cDC1s were initially screened. An optimized hydrolysis-resistant peptide, hr-8, was identified and conjugated to PLGA-loaded antigen (Ag) and CpG adjuvant nanoparticles, resulting in a DC-targeting nanovaccine. The nanovaccine hr-8-PLGA@Ag/CpG facilitates dendritic cell maturation and improves antigen cross-presentation. The nanovaccine can enhance the antitumor immune response mediated by CD8+ T cells by encapsulating the nanovaccine with either exogenous OVA protein antigen or endogenous gp100/E7 antigenic peptide. As a result, strong antitumor effects are observed in both anti-PD-1 responsive B16-OVA and anti-PD-1 non-responsive B16 and TC1 immunocompetent tumor models. In summary, this study presents the initial documentation of a nanovaccine that targets dendritic cells via the novel DEC-205 binding peptide. This approach offers a new method for developing cancer vaccines that can potentially improve the effectiveness of cancer immunotherapy.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA