Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
1.
EMBO Rep ; 25(2): 796-812, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38177920

RESUMO

Although many long noncoding RNAs have been discovered in plants, little is known about their biological function and mode of action. Here we show that the drought-induced long intergenic noncoding RNA DANA1 interacts with the L1p/L10e family member protein DANA1-INTERACTING PROTEIN 1 (DIP1) in the cell nucleus of Arabidopsis, and both DANA1 and DIP1 promote plant drought resistance. DANA1 and DIP1 increase histone deacetylase HDA9 binding to the CYP707A1 and CYP707A2 loci. DIP1 further interacts with PWWP3, a member of the PEAT complex that associates with HDA9 and has histone deacetylase activity. Mutation of DANA1 enhances CYP707A1 and CYP707A2 acetylation and expression resulting in impaired drought tolerance, in agreement with dip1 and pwwp3 mutant phenotypes. Our results demonstrate that DANA1 is a positive regulator of drought response and that DANA1 works jointly with the novel chromatin-related factor DIP1 on epigenetic reprogramming of the plant transcriptome during the response to drought.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , RNA Longo não Codificante , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Histonas/metabolismo , Resistência à Seca , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Secas , Histona Desacetilases/genética , Histona Desacetilases/metabolismo , Regulação da Expressão Gênica de Plantas
2.
Nano Lett ; 24(14): 4217-4223, 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38551179

RESUMO

Under shock loading, the spall strength of nanocrystals exhibits intricate grain-size effects due to the presence of abundant grain boundary and dislocation activities. However, the influence of size on spall toughness and void evolution has been largely overlooked. This study employs molecular dynamics simulations to investigate the damage accumulation characteristics of nanocrystalline aluminum across various grain sizes. Unlike the trade-off observed in quasi-static loading conditions, our study reveals a consistency in which grain size governs both nanovoid nucleation and coalescence, yielding a novel spall strength-toughness synergy. These insights highlight grain sizes that are particularly susceptible to spall fracture, offering a crucial understanding of nanocrystal failure mechanisms in extreme environments.

3.
PLoS Genet ; 17(3): e1009461, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33739974

RESUMO

Long noncoding RNAs (lncRNAs) are emerging as important regulators in plant development, but few of them have been functionally characterized in fruit ripening. Here, we have identified 25,613 lncRNAs from strawberry ripening fruits based on RNA-seq data from poly(A)-depleted libraries and rRNA-depleted libraries, most of which exhibited distinct temporal expression patterns. A novel lncRNA, FRILAIR harbours the miR397 binding site that is highly conserved in diverse strawberry species. FRILAIR overexpression promoted fruit maturation in the Falandi strawberry, which was consistent with the finding from knocking down miR397, which can guide the mRNA cleavage of both FRILAIR and LAC11a (encoding a putative laccase-11-like protein). Moreover, LAC11a mRNA levels were increased in both FRILAIR overexpressing and miR397 knockdown fruits, and accelerated fruit maturation was also found in LAC11a overexpressing fruits. Overall, our study demonstrates that FRILAIR can act as a noncanonical target mimic of miR397 to modulate the expression of LAC11a in the strawberry fruit ripening process.


Assuntos
Fragaria/crescimento & desenvolvimento , Fragaria/genética , Frutas/genética , Regulação da Expressão Gênica de Plantas , RNA Longo não Codificante , RNA de Plantas , Edição de Genes , Estudos de Associação Genética , MicroRNAs/genética , Modelos Biológicos , Fenótipo , RNA Guia de Cinetoplastídeos , RNA Mensageiro/genética
4.
Mol Ecol ; 31(11): 3137-3153, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35366022

RESUMO

Genome scans for selection can provide an efficient way to dissect the genetic basis of domestication traits and understand mechanisms of adaptation during crop evolution. Selection involving soft sweeps (simultaneous selection for multiple alleles) is probably common in plant genomes but is under-studied, and few if any studies have systematically scanned for soft sweeps in the context of crop domestication. Using genome resequencing data from 302 wild and domesticated soybean accessions, we conducted selection scans using five widely employed statistics to identify selection candidates under classical (hard) and soft sweeps. Across the genome, inferred hard sweeps are predominant in domesticated soybean landraces and improved varieties, whereas soft sweeps are more prevalent in a representative subpopulation of the wild ancestor. Six domestication-related genes, representing both hard and soft sweeps and different stages of domestication, were used as positive controls to assess the detectability of domestication-associated sweeps. Performance of various test statistics suggests that differentiation-based (FST ) methods are robust for detecting complete hard sweeps, and that LD-based strategies perform well for identifying recent/ongoing sweeps; however, none of the test statistics detected a known soft sweep we previously documented at the domestication gene Dt1. Genome scans yielded a set of 66 candidate loci that were identified by both differentiation-based and LD-based (iHH) methods; notably, this shared set overlaps with many previously identified QTLs for soybean domestication/improvement traits. Collectively, our results will help to advance genetic characterizations of soybean domestication traits and shed light on selection modes involved in adaptation in domesticated plant species.


Assuntos
Domesticação , Glycine max , Genoma de Planta/genética , Locos de Características Quantitativas/genética , Seleção Genética , Glycine max/genética
5.
Funct Integr Genomics ; 20(2): 201-210, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-31456133

RESUMO

Soybean is an economically important leguminous crop, and pod dehiscence of soybean could cause huge yield loss. In this study, we measured fruit-cracking forces and percentages of dehisced pods for ten soybean accessions, then separated them into two groups as shattering-sensitive (SS) and shattering-resistant (SR) soybeans. Pod transcriptomes from these two groups were analyzed, and 225 differentially expressed genes (DEGs) were identified between SS and SR soybeans. Some of these DEGs have been previously reported to be associated with pod dehiscence in soybean. The expression patterns of selected DEGs were validated by real-time quantitative reverse transcription PCR, which confirmed the expression changes found in RNA-seq analysis. We also de novo identified 246 soybean pod-long intergenic ncRNAs (lincRNAs), 401 intronic lncRNAs, and 23 antisense lncRNAs from these transcriptomes. Furthermore, genes and lincRNAs co-expression network analysis showed that there are distinct expression patterns between SS and SR soybeans in some co-expression modules. In conclusion, we systematically investigated potential genes and molecular pathways as candidates for differences in soybean pod dehiscence and will provide a useful resource for molecular breeding of soybeans.


Assuntos
Regulação da Expressão Gênica de Plantas , Glycine max/fisiologia , Produtos Agrícolas , Perfilação da Expressão Gênica , Ontologia Genética , Genes de Plantas , Oligonucleotídeos Antissenso/genética , Reação em Cadeia da Polimerase em Tempo Real , Glycine max/genética , Especificidade da Espécie , Estresse Mecânico , Transcriptoma
6.
Plant J ; 2018 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-29876974

RESUMO

D1-cytoplasmic male sterility (CMS) rice is a sporophytic cytoplasmic male-sterile rice developed from Dongxiang wild rice that exhibits a no-pollen-grain phenotype. A mitochondrial chimeric gene (orf182) was detected by mitochondrial genome sequencing and a comparative analysis. Orf182 is composed of three recombinant fragments, the largest of which is homologous to Sorghum bicolor mitochondrial sequences. In addition, orf182 was found only in wild rice species collected from China. Northern blot analysis showed that orf182 transcripts were affected by Rf genes in the isocytoplasmic restorer line DR7. Western blot analysis showed that the ORF182 product was localized in the mitochondria of the CMS line. An expression cassette containing orf182 fused to a mitochondrial transit peptide induced the maintainer line of male sterility, which lacked pollen grains in the anthers. Furthermore, the in vivo expression of orf182 also inhibited the growth of Escherichia coli, with lower respiration rate, excess accumulation of reactive oxygen species and decreased ATP levels. We conclude that the mitochondrial chimeric gene orf182 possesses a unique structure and origin differing from other identified mitochondrial CMS genes, and this gene is connected to non-pollen type of sporophytic male sterility in D1-CMS rice.

7.
Plant Mol Biol ; 99(3): 193-204, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30652247

RESUMO

KEY MESSAGE: We reported that knockdown of OsDCL3b decreased grain yield but increased grain quality in rice, which is helpful for molecular breeding in crops. Multiple DICER-LIKE (DCL) genes usually exist and show diverse biochemical and phenotypic functions in land plants. In rice, the biochemical function of OsDCL3b is known to process 24-nucleotide panicle phased small RNAs, however, its phenotypic functions are unclear. Here we reported that knockdown of OsDCL3b led to reduced pollen fertility, seed setting rate, and decreased grain yield but increased grain quality in rice. To reveal the molecular mechanism of the above phenomena, extracted RNAs from rice panicles of the wild type (WT) and OsDCL3b-RNAi line S6-1 were analyzed by deep sequencing. It showed that knockdown of OsDCL3b affected the biogenesis of both 21- and 24-nucleotide small RNAs including miRNAs and phased small RNAs. Using RNA-seq, 644 up- and 530 down-regulated mRNA genes were identified in panicles of line S6-1, and 550 and 273 differentially spliced genes with various alternative splicing (AS) events were observed in panicles of line S6-1 and WT, respectively, suggesting that OsDCL3b involved in influencing the transcript levels of mRNA genes and the AS events in rice panicles. Thus, our results show that knockdown of OsDCL3b will affect the biogenesis of small RNAs, which is involved in regulating the transcription of mRNA genes, and consequently influence the grain yield and quality in rice.


Assuntos
Grão Comestível/crescimento & desenvolvimento , Grão Comestível/genética , Regulação da Expressão Gênica de Plantas/genética , Genes de Plantas/genética , Oryza/genética , Proteínas de Plantas/genética , Proteínas de Plantas/fisiologia , Produtos Agrícolas/genética , Embaralhamento de DNA , Regulação para Baixo , Grão Comestível/química , Fertilidade/genética , Técnicas de Silenciamento de Genes , Sequenciamento de Nucleotídeos em Larga Escala , MicroRNAs/biossíntese , MicroRNAs/genética , Fenótipo , Locos de Características Quantitativas , Sementes/genética
8.
Funct Integr Genomics ; 18(6): 613-625, 2018 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-29754269

RESUMO

Sweet potato (Ipomoea batatas (L.) Lam.) is one of the most important root crops in the world. Initial formation and development of storage roots (SRs) are key factors affecting its yields. In order to study the molecular mechanism and regulatory networks of the SRs development process, we have analyzed root transcriptomes between the high and low starch content sweet potato accessions at three different developmental stages. In this study, we assembled 46,840 unigenes using Illumina paired-end sequencing reads and identified differentially expressed genes (DEGs) between two accessions. The numbers of DEGs were increased with the development of SRs, indicating that the difference between two accessions is enlarging with the maturation. DEGs were mainly enriched in starch biosynthesis, plant hormones regulatory, and genetic information processing pathways. Then, expression patterns of DEGs that are most significant and starch biosynthesis related were validated using qRT-PCR. Our results provide valuable resources to future study on molecular mechanisms of SRs development and candidate genes for starch content improvement in sweet potato.


Assuntos
Regulação da Expressão Gênica de Plantas , Ipomoea batatas/genética , Raízes de Plantas/genética , Amido/genética , Genes de Plantas , Ipomoea batatas/metabolismo , Raízes de Plantas/metabolismo , Amido/biossíntese
10.
Mol Ecol ; 26(18): 4686-4699, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28627128

RESUMO

Determinate growth habit is an agronomically important trait associated with domestication in soya bean. Previous studies have demonstrated that the emergence of determinacy is correlated with artificial selection on four nonsynonymous mutations in the Dt1 gene. To better understand the signatures of the soft sweeps across the Dt1 locus and track the origins of the determinate alleles, we examined patterns of nucleotide variation in Dt1 and the surrounding genomic region of approximately 800 kb. Four local, asymmetrical hard sweeps on four determinate alleles, sized approximately 660, 120, 220 and 150 kb, were identified, which constitute the soft sweeps for the adaptation. These variable-sized sweeps substantially reflected the strength and timing of selection and indicated that the selection on the alleles had been completed rapidly within half a century. Statistics of EHH, iHS, H12 and H2/H1 based on haplotype data had the power to detect the soft sweeps, revealing distinct signatures of extensive long-range LD and haplotype homozygosity, and multiple frequent adaptive haplotypes. A haplotype network constructed for Dt1 and a phylogenetic tree based on its extended haplotype block implied independent sources of the adaptive alleles through de novo mutations or rare standing variation in quick succession during the selective phase, strongly supporting multiple origins of the determinacy. We propose that the adaptation of soya bean determinacy is guided by a model of soft sweeps and that this model might be indispensable during crop domestication or evolution.


Assuntos
Genética Populacional , Glycine max/crescimento & desenvolvimento , Glycine max/genética , Seleção Genética , Alelos , Genes de Plantas , Haplótipos , Modelos Genéticos , Filogenia
11.
Plant Cell Rep ; 36(9): 1417-1426, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28653111

RESUMO

KEY MESSAGE: Our study systematically explored potential genes and molecular pathways as candidates for differences in seed weight resulting from soybean domestication. In addition, potential contributions of lncRNAs to seed weight were also investigated. Soybeans have a long history of domestication in China, and there are several significant phenotypic differences between cultivated and wild soybeans, for example, seeds of cultivars are generally larger and heavier than those from wild accessions. We analyzed seed transcriptomes from thirteen soybean samples, including six landraces and seven wild accessions using strand-specific RNA sequencing. Differentially expressed genes related to seed weight were identified, and some of their homologs were associated with seed development in Arabidopsis. We also identified 1251 long intergenic noncoding RNAs (lincRNAs), 243 intronic RNAs and 81 antisense lncRNAs de novo from these soybean transcriptomes. We then profiled the expression patterns of lncRNAs in cultivated and wild soybean seeds, and found that transcript levels of a number of lncRNAs were sample-specific. Moreover, gene transcript and lincRNA co-expression network analysis showed that some soybean lincRNAs might have functional roles as they were hubs of co-expression modules. In conclusion, this study systematically explored potential genes and molecular pathways as candidates for differences in seed weight resulting from soybean domestication, and will provide a useful future resource for molecular breeding of soybeans.


Assuntos
Regulação da Expressão Gênica de Plantas , Glycine max/genética , Sementes/genética , Transcriptoma/genética , Perfilação da Expressão Gênica/métodos , Ontologia Genética , Redes Reguladoras de Genes , Análise de Sequência de RNA , Glycine max/classificação , Especificidade da Espécie
12.
Acta Biochim Biophys Sin (Shanghai) ; 49(8): 729-736, 2017 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-28673044

RESUMO

Inhibitor of nuclear factor kappa-B kinase ß (IKKß) is a subunit of the IKK complex. It can activate the NF-κB pathway through phosphorylating IκB in response to a wide range of stimuli. In the present study, an IKKß gene from grass carp (Ctenopharyngodon idella; KT282114) was cloned and identified by homologous cloning and rapid-amplification of cDNA ends (RACE) technique. The complete CiIKKß cDNA is 3428 bp in length, with the longest open reading frame (ORF) of 2337 bp encoding a polypeptide of 778 amino acids. The deduced amino acid sequence of CiIKKß has similar domain distribution to those of mammalian. For example, CiIKKß consists of a serine/threonine kinase domain at the N-terminal, a basic region leucin zipper (BRLZ) domain in the middle, a homeobox associated leucin zipper (HALZ) domain and an IKKß NEMO (NF-κB essential modulator) binding domain at the C-terminal. Phylogenetic tree analysis also showed that CiIKKß is highly homologous to zebrafish IKKß (DrIKKß) and clearly distinct from the mammalian and amphibian counterparts. The expression of CiIKKß was ubiquitously found in the liver, intestine, kidney, gill, spleen, heart, and brain tissues of grass carp and significantly up-regulated in CIK cells under the stimulation with Poly I:C and UV-inactivated grass carp hemorrhagic virus. To investigate the activation mechanism of NF-κB pathway in fish and the role of CiIKKß in the pathway, we explored the protein interactions of protein kinase R (PKR) with IKKß and IKKß with IκBα by co-immunoprecipitation and GST-pull down assays. The interaction between each pair was confirmed. The results suggest that CiIKKß may be a primary member in the activation of NF-κB pathway in fish.


Assuntos
Carpas/genética , Proteínas de Peixes/genética , Quinase I-kappa B/genética , Inibidor de NF-kappaB alfa/genética , eIF-2 Quinase/genética , Sequência de Aminoácidos , Animais , Sequência de Bases , Carpas/metabolismo , Células Cultivadas , Proteínas de Peixes/metabolismo , Perfilação da Expressão Gênica/métodos , Células HEK293 , Humanos , Quinase I-kappa B/classificação , Quinase I-kappa B/metabolismo , Inibidor de NF-kappaB alfa/metabolismo , Filogenia , Ligação Proteica , eIF-2 Quinase/metabolismo
13.
Fish Shellfish Immunol ; 54: 564-72, 2016 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-27142933

RESUMO

NF-κB is an important transcription factor for regulating the multiple inflammatory and immune related gene transcription. It can bind with the nuclear factor κB site within the promoter of target genes to regulate their transcriptions. p65, the all-important subunit of NF-κB, is ubiquitously expressed in cells. In the present study, we cloned and identified the p65 subunit from grass carp (Ctenopharyngodon idella) (named Cip65) by homologous cloning and RACE technique. The full length of Cip65 cDNA is 2481 bp along with 9 bp 5' UTR, 639 bp 3' UTR and the largest open reading frame (1833 bp) encoding a polypeptide of 610 amino acids with a well conserved Rel-homology domain (RHD) in N-terminal and a putative transcription activation domain (TAD) in C-terminal. Cip65 gathers with other teleost p65 proteins to form a fish-specific clade clearly distinct from those of mammalian and amphibian counterparts on the phylogenetic tree. In CIK (C. idellus kidney) cells, the expression of Cip65 was significantly up-regulated under the stimulation with Poly I:C. As one member of the NF-κB inhibitor protein (IκB) family, IκBα can dominate the activity of NF-κB by interacting with it. To study the molecular mechanisms of negative feedback loop of NF-κB signaling in fish, we cloned grass carp IκBα (CiIκBα) promoter sequence. CiIκBα promoter is 414 bp in length containing two RelA binding sites and a putative atypical TATA-box. Meanwhile, Cip65 and its mutant proteins including C-terminus deletion mutant of Cip65 (Cip65-ΔC) and N-terminus deletion mutant of Cip65 (Cip65-ΔN) were expressed in Escherichia coli BL21 and purified by affinity chromatography with the Ni-NTA His-Bind resin. In vitro, Cip65 rather than Cip65-ΔC and Cip65-ΔN showed high affinity with CiIκBα promoter sequence by gel mobility shift assays. In vivo, the cotransfection of pcDNA3.1-Cip65 (or pcDNA3.1-Cip65-ΔC, pcDNA3.1-Cip65-ΔN respectively) with pGL3-CiIκBα and pRL-TK renilla luciferase plasmid into CIK cells showed that pcDNA3.1-Cip65 rather than pcDNA3.1-Cip65-ΔC and pcDNA3.1-Cip65-ΔN, can increase the luciferase activity. Taken together, these results suggested that Cip65 can regulate the expression of CiIκBα and works as a negative feedback loop in NF-κB pathway.


Assuntos
Carpas/genética , Carpas/imunologia , Proteínas de Peixes/genética , Inibidor de NF-kappaB alfa/genética , NF-kappa B/genética , Fator de Transcrição RelA/imunologia , Fator de Transcrição RelA/metabolismo , Sequência de Aminoácidos , Animais , Sequência de Bases , Carpas/classificação , Carpas/metabolismo , Clonagem Molecular , DNA Complementar/genética , Proteínas de Peixes/química , Proteínas de Peixes/metabolismo , Regulação da Expressão Gênica/efeitos dos fármacos , Regulação da Expressão Gênica/genética , NF-kappa B/química , NF-kappa B/metabolismo , Filogenia , Poli I-C/farmacologia , Regiões Promotoras Genéticas
14.
ScientificWorldJournal ; 2014: 483526, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24688390

RESUMO

High soils salinity is a main factor affecting agricultural production. Studying the function of salt-tolerance-related genes is essential to enhance crop tolerance to stress. Rab7 is a small GTP-binding protein that is distributed widely among eukaryotes. Endocytic trafficking mediated by Rab7 plays an important role in animal and yeast cells, but the current understanding of Rab7 in plants is still very limited. Herein, we isolated a vesicle trafficking gene, OsRab7, from rice. Transgenic rice over-expressing OsRab7 exhibited enhanced seedling growth and increased proline content under salt-treated conditions. Moreover, an increased number of vesicles was observed in the root tip of OsRab7 transgenic rice. The OsRab7 over-expression plants showed enhanced tolerance to salt stress, suggesting that vacuolar trafficking is important for salt tolerance in plants.


Assuntos
Oryza/fisiologia , Tolerância ao Sal/genética , Proteínas rab de Ligação ao GTP/genética , Regulação da Expressão Gênica de Plantas , Oryza/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas , Prolina/metabolismo , Plântula/genética , Plântula/crescimento & desenvolvimento , Proteínas rab de Ligação ao GTP/metabolismo , proteínas de unión al GTP Rab7
15.
STAR Protoc ; 5(1): 102818, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38183656

RESUMO

Long non-coding RNAs (lncRNAs) work together with diverse RNA-binding proteins (RBPs) to fulfill key regulations in important cellular functions. Here, we present a protocol to detect lncRNA-RBP interactions in vitro using a tRNA scaffold containing a streptavidin aptamer pull-down assay. We describe steps for preparing both protein and lncRNA transcripts, lncRNA-protein interaction detection with an in vitro binding assay, and western blot analysis. This protocol is applicable to screen for RNA-interacting proteins using cell lysates followed by mass spectrometry analysis. For complete details on the use and execution of this protocol, please refer to Yang et al. (2023).1.


Assuntos
RNA Longo não Codificante , RNA Longo não Codificante/genética , RNA de Transferência
16.
STAR Protoc ; 5(1): 102856, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38285736

RESUMO

Analyses of long non-coding RNA (lncRNA)-protein interactions provide key clues for understanding the molecular basis of lncRNA-modulated biological processes. Here, we detail a yeast three-hybrid assay to identify the lncRNA-interacting protein. We describe steps for lncRNA bait preparation, screening an RNA-binding proteins (RBPs) cDNA library, and validation of the lncRNA-RBP interaction. The assay can also be further applied to delineate the region of RBP that mediates the RNA-protein interaction. For complete details on the use and execution of this protocol, please refer to Zhang et al.1.


Assuntos
RNA Longo não Codificante , Técnicas do Sistema de Duplo-Híbrido , RNA Longo não Codificante/genética , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo , Biblioteca Gênica
17.
Int J Ophthalmol ; 17(4): 638-645, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38638263

RESUMO

AIM: To investigate the protective effects, antioxidant potential, and anti-inflammatory mechanisms of eicosane on glutamate-induced cell damage and on N-methyl-D-aspartate (NMDA)-induced retinal ganglion cell (RGC) injury in a mouse model of glaucoma. METHODS: The protective effects of eicosane on the rat R28 retinal precursor cell line were assessed using cell counting kit-8 assays and Hoechst-propidium iodide staining. Intracellular reactive oxygen species (ROS) production was measured using the fluorescent probe 2'-7'-dichlorofluorescin diacetate and flow cytometry. The protective role of eicosane on NMDA-induced RGC injury in a mouse glaucoma model was determined by immunostaining of frozen sections of retina. The effects of eicosane on the metabolome of the retina in mice with NMDA-induced RGC damage were evaluated by liquid chromatography-mass spectroscopy (LC-MS) and untargeted metabolomics analyses. RESULTS: Eicosane treatment significantly attenuated glutamate-induced damage to R28 cells in vitro. Eicosane also protected RGCs against NMDA-induced injury in a mouse glaucoma model. Untargeted metabolomics analyses showed that eicosane increased multiple metabolites, including L-arginine and L-carnitine, in the retina. CONCLUSION: Eicosane has protective effects, antioxidant potential, and anti-inflammatory properties in an in vitro model of glutamate-induced cell damage and in an in vivo model of NMDA-induced RGC injury in mouse glaucoma through modulation of L-arginine and/or L-carnitine metabolism.

18.
Acta Biochim Biophys Sin (Shanghai) ; 45(12): 1062-8, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24113090

RESUMO

PKZ, protein kinase containing Z-DNA domains, is a novel member of the vertebrate eIF2α kinase family. Containing a catalytic domain in C-terminus and two Z-DNA binding domains (Zα1 and Zα2) in N-terminus, PKZ can be activated through the binding of Zα to Z-DNA. However, the regulatory function of PKZ Zα remains to be established. Here, to understand the impact of PKZ Zα on DNA conformational transition, wild-type Zα1Zα2 and 11 mutant proteins were expressed and purified. At the same time, several different lengths of DNA hairpins-d(GC)nT4(GC)n (n = 2-6) and an RNA hairpin-r(GC)6T4(GC)6 were synthesized. The effects of Zα1Zα2 and mutant proteins on the conformation of these synthetic DNA or RNA hairpins were investigated by using circular dichroism spectrum and gel mobility shift assays. The results showed that DNA hairpins retained a conventional B-DNA conformation in the absence of Zα1Zα2, while some of the DNA hairpins (n≥3) were converted to Z-conformation under Zα1Zα2 induction. The tendency was proportionally associated with the increasing amount of GC repeat. In comparison with Zα1Zα2, Zα1Zα1 rather than Zα2Zα2 displayed a higher ability in converting d(GC)6T4(GC)6 from B- to Z-DNA. These results demonstrated that Zα1 sub-domain played a more essential role in the process of B-Z conformational transition than Zα2 sub-domain did. Mutant proteins (K34A, N38A, R39A, Y42A, P57A, P58A, and W60A) could not convert d(GC)6T4(GC)6 into Z-DNA, whereas S35A or K56A retained some partial activities. Interestingly, Zα1Zα2 was also able to induce r(GC)6T4(GC)6 RNA from A-conformation to Z-conformation under appropriate conditions.


Assuntos
DNA Forma Z/química , Proteínas de Peixes/química , Estrutura Terciária de Proteína , eIF-2 Quinase/química , Animais , Sequência de Bases , Dicroísmo Circular , DNA Forma A/química , DNA Forma A/genética , DNA Forma A/metabolismo , DNA de Forma B/química , DNA de Forma B/genética , DNA de Forma B/metabolismo , DNA Forma Z/genética , DNA Forma Z/metabolismo , Proteínas de Peixes/genética , Proteínas de Peixes/metabolismo , Carpa Dourada , Mutação , Conformação de Ácido Nucleico , Oligodesoxirribonucleotídeos/química , Oligodesoxirribonucleotídeos/metabolismo , Oligorribonucleotídeos/química , Oligorribonucleotídeos/metabolismo , Ligação Proteica , eIF-2 Quinase/genética , eIF-2 Quinase/metabolismo
19.
Mol Plant ; 16(8): 1339-1353, 2023 08 07.
Artigo em Inglês | MEDLINE | ID: mdl-37553833

RESUMO

Tens of thousands of long non-coding RNAs have been uncovered in plants, but few of them have been comprehensively studied for their biological function and molecular mechanism of their mode of action. Here, we show that the Arabidopsis long non-coding RNA DANA2 interacts with an AP2/ERF transcription factor ERF84 in the cell nucleus and then affects the transcription of JMJ29 that encodes a Jumonji C domain-containing histone H3K9 demethylase. Both RNA sequencing (RNA-seq) and genetic analyses demonstrate that DANA2 positively regulates drought stress responses through JMJ29. JMJ29 positively regulates the expression of ERF15 and GOLS2 by modulation of H3K9me2 demethylation. Accordingly, mutation of JMJ29 causes decreased ERF15 and GOLS2 expression, resulting in impaired drought tolerance, in agreement with drought-sensitive phenotypes of dana2 and erf84 mutants. Taken together, these results demonstrate that DANA2 is a positive regulator of drought response and works jointly with the transcriptional activator ERF84 to modulate JMJ29 expression in plant response to drought.


Assuntos
Arabidopsis , RNA Longo não Codificante , Histonas/metabolismo , Resistência à Seca , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Arabidopsis/metabolismo , Secas , Regulação da Expressão Gênica de Plantas/genética , Estresse Fisiológico/genética , Plantas Geneticamente Modificadas/genética , Proteínas de Plantas/metabolismo
20.
Dev Cell ; 58(13): 1206-1217.e4, 2023 07 10.
Artigo em Inglês | MEDLINE | ID: mdl-37290444

RESUMO

In eukaryotes, transcription factors are a crucial element in the regulation of gene expression, and nuclear translocation is the key to the function of transcription factors. Here, we show that the long intergenic noncoding RNA ARTA interacts with an importin ß-like protein, SAD2, through a long noncoding RNA-binding region embedded in the carboxyl terminal, and then it blocks the import of the transcription factor MYB7 into the nucleus. Abscisic acid (ABA)-induced ARTA expression can positively regulate ABI5 expression by fine-tuning MYB7 nuclear trafficking. Therefore, the mutation of arta represses ABI5 expression, resulting in desensitization to ABA, thereby reducing Arabidopsis drought tolerance. Our results demonstrate that lncRNA can hijack a nuclear trafficking receptor to modulate the nuclear import of a transcription factor during plant responses to environmental stimuli.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , RNA Longo não Codificante , Arabidopsis/metabolismo , Ácido Abscísico/farmacologia , Ácido Abscísico/metabolismo , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Fatores de Transcrição de Zíper de Leucina Básica/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , beta Carioferinas/genética , Regulação da Expressão Gênica de Plantas , Germinação/genética , Sementes/metabolismo , Carioferinas/genética , Carioferinas/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA