Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
J Ethnopharmacol ; 324: 117772, 2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38266947

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Bushen Zhuangjin Decoction (BZD) are an herbal compound commonly used to treat osteoarthritis (OA) in China. AIM OF THE STUDY: This study aimed to verify the mechanism of Bushen Zhuangjin Decoction in relieving the pain of knee osteoarthritis. MATERIALS AND METHODS: Network pharmacology evaluation was used to discover the potential targets of BZD to relieve pain in KOA. The therapeutic effects of BZD treatment on KOA pain using histomorphology, behavioral assessments, suspension chip analysis, and ultra-high performance liquid chromatography/tandem mass spectrometry (UHPLC-MS/MS) assays. The functional magnetic resonance imaging was used to explore the effects of BZD treatment on brain function associated to KOA. RESULTS: Network pharmacological analysis revealed the association between the analgesic effect of BZD on KOA and the pain signaling neurotransmitter 5-HT. Subsequently, we conducted experiments to verify the therapeutic effect of BZD on pain in KOA animal models. Behavioral tests demonstrated that the pain threshold of knee osteoarthritis rats decreased in PWT and PWL, but BZD was able to increase the pain threshold. Histopathological staining indicated thinning of the cartilage layer and sparse trabeculae in the subchondral bone. Suspension chip analysis revealed a significant increase in pro-inflammatory factors of IL-1α, IL-5, IL-12, IL-17A, RANTES, TNF-α and M-CSF in KOA, along with a significant decrease in anti-inflammatory factor of IL-13. However, BZD treatment decreased the expression of pro-inflammatory factors and increased the content of anti-inflammatory factor. UHPLC-MS/MS analysis showed a significant decrease in the serum levels of GABA, E, GSH, Kyn, Met, and VMA in KOA, which were significantly increased by BZD. Conversely, the serum levels of TrpA, TyrA, Spd, and BALa were significantly increased in KOA and significantly decreased by BZD. ELISA and Western blot analysis showed increased expression of subchondral bone pain-related neuropeptides SP, CGRP, TH, NPY, VEGFA, 5-HT3 in KOA, which were decreased in BZD. Functional magnetic resonance imaging demonstrated that BZD exerts its therapeutic effect on KOA by modulating the activity and functional connections of the cortex, hypothalamus, and hippocampus. CONCLUSIONS: This study confirmed the significant role of pain-related neuromodulation mechanisms in the analgesic therapy of BZD and provides a theoretical foundation for using BZD as a traditional Chinese medical treatment for KOA pain.


Assuntos
Medicamentos de Ervas Chinesas , Osteoartrite do Joelho , Ratos , Animais , Osteoartrite do Joelho/tratamento farmacológico , Osteoartrite do Joelho/metabolismo , Espectrometria de Massas em Tandem , Dor/tratamento farmacológico , Analgésicos/uso terapêutico , Anti-Inflamatórios/uso terapêutico
2.
Spectrochim Acta A Mol Biomol Spectrosc ; 296: 122654, 2023 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-37019002

RESUMO

Knee osteoarthritis (KOA), a progressive joint disease, is a leading source of chronic pain and disability, and its diagnosis mainly depends on medical imaging findings and clinical symptoms. This study aimed to explore an auxiliary diagnostic technology and clinical efficacy evaluation in KOA based on surface-enhanced Raman scattering (SERS). Three sequential experiments were performed: 1) preliminary observation of the therapeutic effects of icariin (ICA); 2) using serum SERS spectra obtained from rat models belonging to sham group, KOA group and icariin treatment group, respectively, to analyze the KOA-related expression profiles; 3) employing partial least squares (PLS) and support vector machines (SVM) algorithms to establish KOA diagnosis model. Pathological changes verified the efficacy of icariin in KOA. Raman peak assignment combined with spectral difference analysis reflected the biochemical changes associated with KOA, including amino acid, carbohydrates and collagen. ICA intervention significantly reversed these changes, although full recovery could not be achieved. Based on PLS-SVM approach, the sensitivity, specificity and accuracy of 100%, 98.33% and 98.89%, respectively, were obtained for screening KOA. This work proves that SERS has great potential to be used as an auxiliary diagnostic technology for KOA, and is also helpful for the exploration of novel KOA treatment agent.


Assuntos
Osteoartrite do Joelho , Análise Espectral Raman , Animais , Ratos , Análise Espectral Raman/métodos , Osteoartrite do Joelho/diagnóstico por imagem , Osteoartrite do Joelho/tratamento farmacológico , Resultado do Tratamento , Máquina de Vetores de Suporte
3.
Biochem Biophys Rep ; 34: 101471, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37125075

RESUMO

Osteogenic differentiation is a crucial biological process for maintaining bone remodelling. Aerobic glycolysis is the main source of energy for osteogenic differentiation. Alpha-enolase (Eno1), a glycolytic enzyme, is a therapeutic target for numerous diseases. Icariin, a principal active component of the traditional Chinese medicine Epimedium grandiflorum, can stimulate osteogenic differentiation. Here, we aimed to determine if icariin promotes osteogenic differentiation via Eno1. Icariin (1 µM) significantly promoted osteogenic differentiation of MC3T3-E1 cells. Icariin upregulated Eno1 protein and gene expressions during osteogenic differentiation. Moreover, ENOblock, a specific inhibitor of Eno1, markedly inhibited icariin-induced osteogenic differentiation. Futhermore, western blot assay showed that Eno1 might mediate osteogenic differentiation through the BMP/Smad4 signalling pathway. Collectively, Eno1 could be a promising drug target for icariin to regulate osteogenic differentiation.

4.
Heliyon ; 9(9): e19322, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37674829

RESUMO

Osteoarthritis (OA) is a common joint disease characterized by chronic pain, and the perception of pain is closely associated with brain function and neuropeptide regulation. Rehmannia is common plant herb with anti-inflammatory and analgesic properties that is used to treat OA. However, it is unclear whether Rehmannia alleviates OA-related pain via regulation of neuropeptides and brain function. We examined the pain relief regulatory pathway in OA after treatment with Rehmannia by verifying the therapeutic effect of Rehmannia alcohol extract in vivo and vitro and exploring of the potential mechanism underlying the analgesic effect of Rahmanian using functional magnetic resonance imaging and measuring neuropeptide secretion. Our results showed that Rehmannia alcohol extract and the related active ingredient, Rehmannioside D, can delay cartilage degradation and alleviate inflammation in OA rats. The Rehmannia alcohol extract can also relieve OA pain, reduce the secretion of calcitonin gene-related peptide (CGRP) and substance P (SP), and reverse the pathological changes in the cerebral cortex and hippocampus. Our research results demonstrate that Rehmannia alleviates OA pain by protecting cartilage, preventing the stimulation of inflammatory factors on neuropeptide secretion, and influencing the relevant functional areas of the brain.

5.
Front Endocrinol (Lausanne) ; 13: 876067, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36034452

RESUMO

Bone immunity regulates osteoclast differentiation and bone resorption and is a potential target for the treatment of postmenopausal osteoporosis (PMOP). The molecular network between bone metabolism and the immune system is complex. However, the molecular mechanism underlying the involvement of the major histocompatibility complex class II (MHC-II) molecule protein presentation pathway in PMOP remains to be elucidated. The MHC-II molecule is a core molecule of the protein presentation pathway. It is combined with the processed short peptide and presented to T lymphocytes, thereby activating them to become effector T cells. T-cell-derived inflammatory factors promote bone remodeling in PMOP. Moreover, the MHC-II molecule is highly expressed in osteoclast precursors. MHC-II transactivator (CIITA) is the main regulator of MHC-II gene expression and the switch for protein presentation. CIITA is also a major regulator of osteoclast differentiation and bone homeostasis. Therefore, we hypothesized that the MHC-II promotes osteoclast differentiation, providing a novel pathogenic mechanism and a potential target for the treatment of PMOP.


Assuntos
Osteoporose Pós-Menopausa , Feminino , Antígenos de Histocompatibilidade Classe II , Humanos , Complexo Principal de Histocompatibilidade , Osteoclastos , Linfócitos T
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA