Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros

Base de dados
Tipo de documento
Assunto da revista
Intervalo de ano de publicação
1.
Opt Lett ; 47(11): 2810-2813, 2022 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-35648936

RESUMO

The Vernier effect has been widely used in the field of measurement and instrumentation for sensitivity enhancement. Single-point optical fiber sensors based on the Vernier effect have been extensively reported in recent years. In this Letter, for the first time, a distributed optical fiber sensor based on microwave photonics with improved sensitivity enabled by the Vernier effect is demonstrated. Distributed sensing is realized by interrogating a Fabry-Perot interferometer (FPI) array formed by cascaded reflectors along an optical fiber using an optical carrier-based microwave interferometry (OCMI) system. A reference FPI is also included in the system. The interferogram of each of the sensing FPIs can be unambiguously reconstructed and superimposed with the reconstructed interferogram of the reference FPI to generate the Vernier effect. By tracking the spectral shift of the envelope signals in the superimposed spectra, the measurement sensitivities of the sensing FPIs can be significantly improved. A simple direct modulation-based OCMI system is used in the proof-of-concept demonstration, showing sensitivity-enhanced distributed sensing capability. Moreover, the sensitivity amplification factor can be adjusted by varying the optical length difference of the sensing and reference FPIs, similar to that of Vernier effect-based single-point optical fiber sensors.

2.
Sensors (Basel) ; 22(10)2022 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-35632185

RESUMO

In this article, a new concept of microwave photonic (MWP) fiber ring resonator is introduced. In particular, the complex transmission spectra of the resonator in the microwave domain, including magnitude and phase spectra, are measured and characterized. Multiple resonance peaks are obtained in the magnitude spectrum; rapid variations in phase near resonance (i.e., enhanced group delay) are observed in the phase spectrum. We also experimentally demonstrate that the MWP fiber ring resonator can be potentially employed as a novel optical fiber sensor for macro-bending and fiber length change sensing (strain sensing). The experimental results are in good agreement with theoretical predictions.

3.
Sensors (Basel) ; 20(14)2020 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-32668766

RESUMO

This paper presents a spatially distributed fiber-optic sensor system designed for demanding applications, like temperature measurements in the steel industry. The sensor system employed optical frequency domain reflectometry (OFDR) to interrogate Rayleigh backscattering signals in single-mode optical fibers. Temperature measurements employing the OFDR system were compared with conventional thermocouple measurements, accentuating the spatially distributed sensing capability of the fiber-optic system. Experiments were designed and conducted to test the spatial thermal mapping capability of the fiber-optic temperature measurement system. Experimental simulations provided evidence that the optical fiber system could resolve closely spaced temperature features, due to the high spatial resolution and fast measurement rates of the OFDR system. The ability of the fiber-optic system to perform temperature measurements in a metal casting was tested by monitoring aluminum solidification in a sand mold. The optical fiber, encased in a stainless steel tube, survived both mechanically and optically at temperatures exceeding 700 °C. The ability to distinguish between closely spaced temperature features that generate information-rich thermal maps opens up many applications in the steel industry.

4.
Opt Express ; 26(3): 2546-2556, 2018 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-29401793

RESUMO

In this paper, we introduce and demonstrate a novel optical fiber extrinsic Fabry-Perot interferometer (EFPI) for tilt measurements with 20 nrad resolution. Compared with in-line optical fiber inclinometers, an extrinsic sensing structure is used in the inclinometer reported herein. Our design greatly improves on the tilt angle resolution, the temperature stability, and the mechanical robustness of inclinometers with advanced designs. An EFPI cavity, which is formed between endfaces of a suspended rectangular mass block and a fixed optical fiber, is packaged inside a rectangular container box with an oscillation dampening mechanism. Importantly, the two reflectors of the EFPI sensor remain parallel while the cavity length of the EFPI sensor meters a change in tilt. According to the Fabry-Perot principle, the change in the cavity length can be determined, and the tilt angle of the inclinometer can be calculated. The sensor design and the measurement principle are discussed. An experiment based on measuring the tilt angle of a simply-supported 70-cm beam induced by a small load is presented to verify the resolution of our prototype inclinometer. The experimental results demonstrate significantly higher resolution (ca. 20 nrad) compared to commercial devices. The temperature cross-talk of the inclinometer was also investigated in a separate experiment and found to be 0.0041 µrad /°C. Our inclinometer was also employed for monitoring the daily periodic variations in the tilt angle of a windowsill in a cement building caused by local temperature changes during a five-day period. The multi-day study demonstrated excellent stability and practicability for the novel device. The significant inclinometer improvements in differential tilt angle resolution, temperature compensation, and mechanical robustness also provide unique opportunities for investigating spatial-temporal modulations of gravitational fields.

5.
Sensors (Basel) ; 18(5)2018 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-29695063

RESUMO

We present a hollow coaxial cable Fabry-Perot resonator for displacement and strain measurement up to 1000 °C. By employing a novel homemade hollow coaxial cable made of stainless steel as a sensing platform, the high-temperature tolerance of the sensor is dramatically improved. A Fabry-Perot resonator is implemented on this hollow coaxial cable by introducing two highly-reflective reflectors along the cable. Based on a nested structure design, the external displacement and strain can be directly correlated to the cavity length of the resonator. By tracking the shift of the amplitude reflection spectrum of the microwave resonator, the applied displacement and strain can be determined. The displacement measurement experiment showed that the sensor could function properly up to 1000 °C. The sensor was also employed to measure the thermal strain of a steel plate during the heating process. The stability of the novel sensor was also investigated. The developed sensing platform and sensing configurations are robust, cost-effective, easy to manufacture, and can be flexibly designed for many other measurement applications in harsh high-temperature environments.

6.
Sensors (Basel) ; 17(11)2017 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-29165351

RESUMO

This paper presents an extrinsic Fabry-Perot interferometer-based optical fiber sensor (EFPI) for measuring three-dimensional (3D) displacements, including interfacial sliding and debonding during delamination. The idea employs three spatially arranged EFPIs as the sensing elements. In our sensor, the three EFPIs are formed by three endfaces of three optical fibers and their corresponding inclined mirrors. Two coincident roof-like metallic structures are used to support the three fibers and the three mirrors, respectively. Our sensor was calibrated and then used to monitor interfacial sliding and debonding between a long square brick of mortar and its support structure (i.e., a steel base plate) during the drying/curing process. This robust and easy-to-manufacture triaxial EFPI-based 3D displacement sensor has great potential in structural health monitoring, the construction industry, oil well monitoring, and geotechnology.

7.
Biosensors (Basel) ; 12(12)2022 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-36551126

RESUMO

Early on-site diagnosis of mild traumatic brain injury (mTBI) will provide the best guidance for clinical practice. However, existing methods and sensors cannot provide sufficiently detailed physical information related to the blunt force impact. In the present work, a smart helmet with a single embedded fiber Bragg grating (FBG) sensor is developed, which can monitor complex blunt force impact events in real time under both wired and wireless modes. The transient oscillatory signal "fingerprint" can specifically reflect the impact-caused physical deformation of the local helmet structure. By combination with machine learning algorithms, the unknown transient impact can be recognized quickly and accurately in terms of impact magnitude, direction, and latitude. Optimization of the training dataset was also validated, and the boosted ML models, such as the S-SVM+ and S-IBK+, are able to predict accurately with complex databases. Thus, the ML-FBG smart helmet system developed by this work may become a crucial intervention alternative during a traumatic brain injury event.


Assuntos
Tecnologia de Fibra Óptica , Dispositivos de Proteção da Cabeça , Algoritmos , Aprendizado de Máquina
8.
J Neurosci Methods ; 351: 109073, 2021 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-33440230

RESUMO

BACKGROUND: Mild traumatic brain injury (mTBI) strongly associates with chronic neurodegenerative impairments such as post-traumatic stress disorder (PTSD) and mild cognitive impairment. Early detection of concussive events would significantly enhance the understanding of head injuries and provide better guidance for urgent diagnoses and the best clinical practices for achieving full recovery. NEW METHOD: A smart helmet was developed with a single embedded fiber Bragg grating (FBG) sensor for real-time sensing of blunt-force impact events to helmets. The transient signals provide both magnitude and directional information about the impact event, and the data can be used for training machine learning (ML) models. RESULTS: The FBG-embedded smart helmet prototype successfully achieved real-time sensing of concussive events. Transient data "fingerprints" consisting of both magnitude and direction of impact, were found to correlate with types of blunt-force impactors. Trained ML models were able to accurately predict (R2 ∼ 0.90) the magnitudes and directions of blunt-force impact events from data not used for model training. COMPARISON WITH EXISTING METHODS: The combination of the smart helmet data with analyses using ML models provides accurate predictions of the types of impactors that caused the events, as well as the magnitudes and the directions of the impact forces, which are unavailable using existing devices. CONCLUSION: This work resulted in an ML-assisted, FBG-embedded smart helmet for real-time identification of concussive events using a highly accurate multi-metric strategy. The use of ML-FBG smart helmet systems can serve as an early-stage intervention strategy during and immediately following a concussive event.


Assuntos
Concussão Encefálica , Traumatismos Craniocerebrais , Concussão Encefálica/prevenção & controle , Tecnologia de Fibra Óptica , Dispositivos de Proteção da Cabeça , Humanos , Aprendizado de Máquina
9.
Rev Sci Instrum ; 89(4): 045003, 2018 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-29716359

RESUMO

We report, for the first time, a low-cost and robust homemade hollow coaxial cable Fabry-Pérot resonator (HCC-FPR) for measuring liquid dielectric constant. In the HCC design, the traditional dielectric insulating layer is replaced by air. A metal disk is welded onto the end of the HCC serving as a highly reflective reflector, and an open cavity is engineered on the HCC. After the open cavity is filled with the liquid analyte (e.g., water), the air-liquid interface acts as a highly reflective reflector due to large impedance mismatch. As a result, an HCC-FPR is formed by the two highly reflective reflectors, i.e., the air-liquid interface and the metal disk. We measured the room temperature dielectric constant for ethanol/water mixtures with different concentrations using this homemade HCC-FPR. Monitoring the evaporation of ethanol in ethanol/water mixtures was also conducted to demonstrate the ability of the sensor for continuously monitoring the change in dielectric constant. The results revealed that the HCC-FPR could be a promising evaporation rate detection platform with high performance. Due to its great advantages, such as high robustness, simple configuration, and ease of fabrication, the novel HCC-FPR based liquid dielectric constant sensor is believed to be of high interest in various fields.

10.
Rev Sci Instrum ; 88(11): 115002, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-29195390

RESUMO

We report, for the first time, a low cost, compact, and novel mechanically designed extrinsic Fabry-Perot interferometer (EFPI)-based optical fiber sensor with a strain amplification mechanism for strain measurement. The fundamental design principle includes a buckled beam with a coated gold layer, mounted on two grips. A Fabry-Perot cavity is produced between the buckled beam and the endface of a single mode fiber (SMF). A ceramic ferrule is applied for supporting and orienting the SMF. The principal sensor elements are packaged and protected by two designed metal shells. The midpoint of the buckled beam will experience a deflection vertically when the beam is subjected to a horizontally/axially compressive displacement. It has been found that the vertical deflection of the beam at midpoint can be 6-17 times larger than the horizontal/axial displacement, which forms the basis of a strain amplification mechanism. The user-configurable buckling beam geometry-based strain amplification mechanism enables the strain sensor to achieve a wide range of strain measurement sensitivities. The designed EFPI was used to monitor shrinkage of a square brick of mortar. The strain was measured during the drying/curing stage. We envision that it could be a good strain sensor to be embedded in civil materials/structures under a harsh environment for a prolonged period of time.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA