Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Am Chem Soc ; 146(2): 1644-1656, 2024 01 17.
Artigo em Inglês | MEDLINE | ID: mdl-38174960

RESUMO

Photodynamic therapy (PDT), an emergent noninvasive cancer treatment, is largely dependent on the presence of efficient photosensitizers (PSs) and a sufficient oxygen supply. However, the therapeutic efficacy of PSs is greatly compromised by poor solubility, aggregation tendency, and oxygen depletion within solid tumors during PDT in hypoxic microenvironments. Despite the potential of PS-based metal-organic frameworks (MOFs), addressing hypoxia remains challenging. Boron dipyrromethene (BODIPY) chromophores, with excellent photostability, have exhibited great potential in PDT and bioimaging. However, their practical application suffers from limited chemical stability under harsh MOF synthesis conditions. Herein, we report the synthesis of the first example of a Zr-based MOF, namely, 69-L2, exclusively constructed from the BODIPY-derived ligands via a single-crystal to single-crystal post-synthetic exchange, where a direct solvothermal method is not applicable. To increase the PDT performance in hypoxia, we modify 69-L2 with fluorinated phosphate-functionalized methoxy poly(ethylene glycol). The resulting 69-L2@F is an oxygen carrier, enabling tumor oxygenation and simultaneously acting as a PS for reactive oxygen species (ROS) generation under LED irradiation. We demonstrate that 69-L2@F has an enhanced PDT effect in triple-negative breast cancer MDA-MB-231 cells under both normoxia and hypoxia. Following positive results, we evaluated the in vivo activity of 69-L2@F with a hydrogel, enabling local therapy in a triple-negative breast cancer mice model and achieving exceptional antitumor efficacy in only 2 days. We envision BODIPY-based Zr-MOFs to provide a solution for hypoxia relief and maximize efficacy during in vivo PDT, offering new insights into the design of promising MOF-based PSs for hypoxic tumors.


Assuntos
Compostos de Boro , Estruturas Metalorgânicas , Neoplasias , Fotoquimioterapia , Neoplasias de Mama Triplo Negativas , Humanos , Animais , Camundongos , Estruturas Metalorgânicas/química , Fotoquimioterapia/métodos , Zircônio/uso terapêutico , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Fármacos Fotossensibilizantes/farmacologia , Fármacos Fotossensibilizantes/uso terapêutico , Oxigênio , Neoplasias/terapia , Hipóxia , Linhagem Celular Tumoral , Microambiente Tumoral
3.
PLoS Pathog ; 17(8): e1009824, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34398933

RESUMO

The herpes simplex virus (HSV)-1 protein pUL21 is essential for efficient virus replication and dissemination. While pUL21 has been shown to promote multiple steps of virus assembly and spread, the molecular basis of its function remained unclear. Here we identify that pUL21 is a virus-encoded adaptor of protein phosphatase 1 (PP1). pUL21 directs the dephosphorylation of cellular and virus proteins, including components of the viral nuclear egress complex, and we define a conserved non-canonical linear motif in pUL21 that is essential for PP1 recruitment. In vitro evolution experiments reveal that pUL21 antagonises the activity of the virus-encoded kinase pUS3, with growth and spread of pUL21 PP1-binding mutant viruses being restored in adapted strains where pUS3 activity is disrupted. This study shows that virus-directed phosphatase activity is essential for efficient herpesvirus assembly and spread, highlighting the fine balance between kinase and phosphatase activity required for optimal virus replication.


Assuntos
Herpes Simples/metabolismo , Herpes Simples/virologia , Herpesvirus Humano 1/fisiologia , Monoéster Fosfórico Hidrolases/metabolismo , Proteínas Virais/metabolismo , Montagem de Vírus , Replicação Viral , Animais , Chlorocebus aethiops , Células HEK293 , Herpesvirus Humano 1/enzimologia , Humanos , Monoéster Fosfórico Hidrolases/genética , Células Vero , Proteínas Virais/genética , Liberação de Vírus
4.
J Am Chem Soc ; 143(34): 13557-13572, 2021 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-34357768

RESUMO

Metal-organic framework nanoparticles (nanoMOFs) have been widely studied in biomedical applications. Although substantial efforts have been devoted to the development of biocompatible approaches, the requirement of tedious synthetic steps, toxic reagents, and limitations on the shelf life of nanoparticles in solution are still significant barriers to their translation to clinical use. In this work, we propose a new postsynthetic modification of nanoMOFs with phosphate-functionalized methoxy polyethylene glycol (mPEG-PO3) groups which, when combined with lyophilization, leads to the formation of redispersible solid materials. This approach can serve as a facile and general formulation method for the storage of bare or drug-loaded nanoMOFs. The obtained PEGylated nanoMOFs show stable hydrodynamic diameters, improved colloidal stability, and delayed drug-release kinetics compared to their parent nanoMOFs. Ex situ characterization and computational studies reveal that PEGylation of PCN-222 proceeds in a two-step fashion. Most importantly, the lyophilized, PEGylated nanoMOFs can be completely redispersed in water, avoiding common aggregation issues that have limited the use of MOFs in the biomedical field to the wet form-a critical limitation for their translation to clinical use as these materials can now be stored as dried samples. The in vitro performance of the addition of mPEG-PO3 was confirmed by the improved intracellular stability and delayed drug-release capability, including lower cytotoxicity compared with that of the bare nanoMOFs. Furthermore, z-stack confocal microscopy images reveal the colocalization of bare and PEGylated nanoMOFs. This research highlights a facile PEGylation method with mPEG-PO3, providing new insights into the design of promising nanocarriers for drug delivery.


Assuntos
Portadores de Fármacos/química , Estruturas Metalorgânicas/química , Polietilenoglicóis/química , Sobrevivência Celular/efeitos dos fármacos , Doxorrubicina/química , Doxorrubicina/metabolismo , Doxorrubicina/farmacologia , Portadores de Fármacos/síntese química , Liberação Controlada de Fármacos , Células HeLa , Humanos , Simulação de Dinâmica Molecular , Nanopartículas/química , Fosfatos/química
5.
ACS Appl Mater Interfaces ; 15(14): 17485-17494, 2023 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-36976817

RESUMO

Despite the enormous advancements in nanomedicine research, a limited number of nanoformulations are available on the market, and few have been translated to clinics. An easily scalable, sustainable, and cost-effective manufacturing strategy and long-term stability for storage are crucial for successful translation. Here, we report a system and method to instantly formulate NF achieved with a nanoscale polyelectrolyte coacervate-like system, consisting of anionic pseudopeptide poly(l-lysine isophthalamide) derivatives, polyethylenimine, and doxorubicin (Dox) via simple "mix-and-go" addition of precursor solutions in seconds. The coacervate-like nanosystem shows enhanced intracellular delivery of Dox to patient-derived multidrug-resistant (MDR) cells in 3D tumor spheroids. The results demonstrate the feasibility of an instant drug formulation using a coacervate-like nanosystem. We envisage that this technique can be widely utilized in the nanomedicine field to bypass the special requirement of large-scale production and elongated shelf life of nanomaterials.


Assuntos
Nanopartículas , Nanoestruturas , Neoplasias , Humanos , Estudos de Viabilidade , Doxorrubicina/farmacologia , Doxorrubicina/química , Neoplasias/patologia , Portadores de Fármacos/química , Nanopartículas/química , Linhagem Celular Tumoral , Sistemas de Liberação de Medicamentos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA