RESUMO
Multiple myeloma (MM) is the second most common hematological malignancy, which remains incurable despite recent advances in treatment strategies. Like other forms of cancer, MM is characterized by genomic instability, caused by defects in DNA repair. Along with mutations in DNA repair genes and genotoxic drugs used to treat MM, non-canonical secondary DNA structures (four-stranded G-quadruplex structures) can affect accumulation of somatic mutations and chromosomal abnormalities in the tumor cells of MM patients. Here, we tested the hypothesis that G-quadruplex structures may influence the distribution of somatic mutations in the tumor cells of MM patients. We sequenced exomes of normal and tumor cells of 11 MM patients and analyzed the data for the presence of G4 context around points of somatic mutations. To identify molecular mechanisms that could affect mutational profile of tumors, we also analyzed mutational signatures in tumor cells as well as germline mutations for the presence of specific SNPs in DNA repair genes or in genes regulating G-quadruplex unwinding. In several patients, we found that sites of somatic mutations are frequently located in regions with G4 context. This pattern correlated with specific germline variants found in these patients. We discuss the possible implications of these variants for mutation accumulation and specificity in MM and propose that the extent of G4 context enrichment around somatic mutation sites may be a novel metric characterizing mutational processes in tumors.
Assuntos
Quadruplex G , Mieloma Múltiplo , Mutação , Humanos , Mieloma Múltiplo/genética , Polimorfismo de Nucleotídeo Único , Reparo do DNA/genética , Instabilidade GenômicaRESUMO
Baker's yeast, S. cerevisiae, is an excellent model organism exploited for molecular genetic studies of the mechanisms of genome stability in eukaryotes. Genetic peculiarities of commonly used yeast strains impact the processes of DNA replication, repair, and recombination (RRR). We compared the genomic DNA sequence variation of the five strains that are intensively used for RRR studies. We used yeast next-generation sequencing data to detect the extent and significance of variation in 183 RRR genes. We present a detailed analysis of the differences that were found even in closely related strains. Polymorphisms of common yeast strains should be considered when interpreting the outcomes of genome stability studies, especially in cases of discrepancies between laboratories describing the same phenomena.
Assuntos
Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Humanos , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Polimorfismo Genético , Proteínas de Saccharomyces cerevisiae/metabolismo , Instabilidade Genômica , DNA/metabolismoRESUMO
Spontaneous or induced DNA lesions can result in stable gene mutations and chromosomal aberrations due to their inaccurate repair, ultimately resulting in phenotype changes. Some DNA lesions per se may interfere with transcription, leading to temporary phenocopies of mutations. The direct impact of primary DNA lesions on phenotype before their removal by repair is not well understood. To address this question, we used the alpha-test, which allows for detecting various genetic events leading to temporary or hereditary changes in mating type αâa in heterothallic strains of yeast Saccharomyces cerevisiae. Here, we compared yeast strains carrying mutations in DNA repair genes, mismatch repair (pms1), base excision repair (ogg1), and homologous recombination repair (rad52), as well as mutagens causing specific DNA lesions (UV light and camptothecin). We found that double-strand breaks and UV-induced lesions have a stronger effect on the phenotype than mismatches and 8-oxoguanine. Moreover, the loss of the entire chromosome III leads to an immediate mating type switch αâa and does not prevent hybridization. We also evaluated the ability of primary DNA lesions to persist through the cell cycle by assessing the frequency of UV-induced inherited and non-inherited genetic changes in asynchronous cultures of a wild-type (wt) strain and in a cdc28-4 mutant arrested in the G1 phase. Our findings suggest that the phenotypic manifestation of primary DNA lesions depends on their type and the stage of the cell cycle in which it occurred.
Assuntos
Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Reparo do DNA/genética , Ciclo Celular , DNA/metabolismoRESUMO
The Puma lineage within the family Felidae consists of 3 species that last shared a common ancestor around 4.9 million years ago. Whole-genome sequences of 2 species from the lineage were previously reported: the cheetah (Acinonyx jubatus) and the mountain lion (Puma concolor). The present report describes a whole-genome assembly of the remaining species, the jaguarundi (Puma yagouaroundi). We sequenced the genome of a male jaguarundi with 10X Genomics linked reads and assembled the whole-genome sequence. The assembled genome contains a series of scaffolds that reach the length of chromosome arms and is similar in scaffold contiguity to the genome assemblies of cheetah and puma, with a contig N50 = 100.2 kbp and a scaffold N50 = 49.27 Mbp. We assessed the assembled sequence of the jaguarundi genome using BUSCO, aligned reads of the sequenced individual and another published female jaguarundi to the assembled genome, annotated protein-coding genes, repeats, genomic variants and their effects with respect to the protein-coding genes, and analyzed differences of the 2 jaguarundis from the reference mitochondrial genome. The jaguarundi genome assembly and its annotation were compared in quality, variants, and features to the previously reported genome assemblies of puma and cheetah. Computational analyzes used in the study were implemented in transparent and reproducible way to allow their further reuse and modification.
Assuntos
Felidae , Puma , Animais , Feminino , Genoma , Genômica , Masculino , Anotação de Sequência Molecular , Puma/genéticaRESUMO
The Russian Federation is the largest and one of the most ethnically diverse countries in the world, however no centralized reference database of genetic variation exists to date. Such data are crucial for medical genetics and essential for studying population history. The Genome Russia Project aims at filling this gap by performing whole genome sequencing and analysis of peoples of the Russian Federation. Here we report the characterization of genome-wide variation of 264 healthy adults, including 60 newly sequenced samples. People of Russia carry known and novel genetic variants of adaptive, clinical and functional consequence that in many cases show allele frequency divergence from neighboring populations. Population genetics analyses revealed six phylogeographic partitions among indigenous ethnicities corresponding to their geographic locales. This study presents a characterization of population-specific genomic variation in Russia with results important for medical genetics and for understanding the dynamic population history of the world's largest country.
Assuntos
Variação Genética , Adulto , Doenças Transmissíveis/genética , Demografia , Haplótipos , Humanos , Mutação INDEL , Farmacogenética , Fenótipo , Filogeografia , Polimorfismo de Nucleotídeo Único , Federação Russa/etnologia , Seleção Genética , Sequenciamento Completo do GenomaRESUMO
This study examines variables associated with behavior for obtaining prescription medications with or without doctors' prescriptions following direct-to-consumer prescription medication advertisement (DTCA) exposure. Data were analyzed from 631 college students. We found that viewing traditional or cable television DTCA was associated with lower agreement for obtaining prescription medications from a doctor. Reading social media DTCA print content on Twitter was associated with higher agreement for obtaining a prescription medication without a doctor's prescription. In conclusion, college students go for digital social media DTCA and not digital Internet DTCA or traditional DTCA.
Assuntos
Publicidade Direta ao Consumidor , Comportamento de Busca de Informação , Medicamentos sob Prescrição/administração & dosagem , Mídias Sociais/tendências , Adulto , Indústria Farmacêutica/economia , Feminino , Humanos , Masculino , Médicos , Medicamentos sob Prescrição/economia , Teoria Psicológica , Estudantes , Adulto JovemRESUMO
Eriophyoidea is a group of phytoparasitic mites with poorly resolved phylogeny. Previous studies inferred Eriophyidae s.l. as the largest molecular clade of Eriophyoidea, and Nothopodinae as the basal divergence of Eriophyidae s.l. We investigate the morphology and molecular phylogeny of Nothopoda todeican. sp. (Nothopodinae, Nothopodini), associated with a disjunct Afro-Australasian fern Todea barbara (Osmundaceae) from South Africa. Our analyses (1) determine new erroneous sequences (KF782375, KF782475, KF782586) wrongly assigned to Nothopodinae instead of Phyllocoptinae, (2) confirm the basal position of Nothopodinae in Eriophyoidea s.l., (3) question the monophyly of the Colopodacini and Nothopodini tribes, and (4) show the nested position of African fern-associated Nothopoda within a clade dominated by Asian nothopodines from angiosperms, which implies (a) a secondary association of nothopodines with ferns and (b) no relation between geography (continents) and the phylogenetic relationships of Nothopodinae species. Finally, we obtained a first complete mitochondrial genome for Nothopodinae and revealed a new gene order in the mitogenome of N. todeican. sp., notably deviating from those in other investigated eriophyoids. Our results contribute to resolving the phylogeny of Eriophyoidea and provide an example of an integrative study of a new taxon belonging to an economically important group of acariform mites.
RESUMO
The setae in Eriophyoidea are filiform, slightly bent and thickened near the base. Confocal microscopy indicates that their proximal and distal parts differ in light reflection and autofluorescence. Approximately 50 genera have atypically shaped setae: bifurcated, angled or swollen. These modifications are known in the basal part of prosomal setae u', ft', ftâ³, d, v, bv, ve, sc and caudal setae h2. We assessed the distribution of atypically shaped setae in Eriophyoidea and showed that they are scattered in different phylogenetic lineages. We hypothesized that the ancestral setae of eriophyoid mites were bifurcated before later simplifying into filiform setae. We also proposed that hypo-furcating setae are a synapomorphy that unites Eriophyoidea with Nematalycidae. We analyzed four new mitochondrial genomes of Leipothrix, the largest genus with bifurcated d, and showed that it is monophyletic and has a unique mitochondrial gene order with translocated trnK. We exclude Cereusacarus juniperensisn. comb. Xue and Yin, 2020 from Leipothrix and transfer five Epitrimerus spp. to Leipothrix: L. aegopodii (Liro 1941) n. comb., L. femoralis (Liro 1941) n. comb., L. geranii (Liro 1941) n. comb., L. ranunculi (Liro 1941) n. comb., and L. triquetra (Meyer 1990) n. comb.
RESUMO
The authors wish to make the following corrections to this paper [...].
RESUMO
Current eukaryotic replication models postulate that leading and lagging DNA strands are replicated predominantly by dedicated DNA polymerases. The catalytic subunit of the leading strand DNA polymerase ε, Pol2, consists of two halves made of two different ancestral B-family DNA polymerases. Counterintuitively, the catalytically active N-terminal half is dispensable, while the inactive C-terminal part is required for viability. Despite extensive studies of yeast Saccharomyces cerevisiae strains lacking the active N-terminal half, it is still unclear how these strains survive and recover. We designed a robust method for constructing mutants with only the C-terminal part of Pol2. Strains without the active polymerase part show severe growth defects, sensitivity to replication inhibitors, chromosomal instability, and elevated spontaneous mutagenesis. Intriguingly, the slow-growing mutant strains rapidly accumulate fast-growing clones. Analysis of genomic DNA sequences of these clones revealed that the adaptation to the loss of the catalytic N-terminal part of Pol2 occurs by a positive selection of mutants with improved growth. Elevated mutation rates help generate sufficient numbers of these variants. Single nucleotide changes in the cell cycle-dependent kinase gene, CDC28, improve the growth of strains lacking the N-terminal part of Pol2, and rescue their sensitivity to replication inhibitors and, in parallel, lower mutation rates. Our study predicts that changes in mammalian homologs of cyclin-dependent kinases may contribute to cellular responses to the leading strand polymerase defects.
Assuntos
Proteína Quinase CDC28 de Saccharomyces cerevisiae/genética , Proteína Quinase CDC28 de Saccharomyces cerevisiae/metabolismo , DNA Polimerase II/genética , Replicação do DNA , Saccharomyces cerevisiae/genética , DNA Polimerase II/metabolismo , DNA Fúngico , Genoma Fúngico , Mutagênese , Taxa de Mutação , Polimorfismo de Nucleotídeo Único , Saccharomyces cerevisiae/enzimologia , Seleção GenéticaRESUMO
Multiple myeloma (MM) is a malignant neoplasm of terminally differentiated immunoglobulin-producing B lymphocytes called plasma cells. MM is the second most common hematologic malignancy, and it poses a heavy economic and social burden because it remains incurable and confers a profound disability to patients. Despite current progress in MM treatment, the disease invariably recurs, even after the transplantation of autologous hematopoietic stem cells (ASCT). Biological processes leading to a pathological myeloma clone and the mechanisms of further evolution of the disease are far from complete understanding. Genetically, MM is a complex disease that demonstrates a high level of heterogeneity. Myeloma genomes carry numerous genetic changes, including structural genome variations and chromosomal gains and losses, and these changes occur in combinations with point mutations affecting various cellular pathways, including genome maintenance. MM genome instability in its extreme is manifested in mutation kataegis and complex genomic rearrangements: chromothripsis, templated insertions, and chromoplexy. Chemotherapeutic agents used to treat MM add another level of complexity because many of them exacerbate genome instability. Genome abnormalities are driver events and deciphering their mechanisms will help understand the causes of MM and play a pivotal role in developing new therapies.
RESUMO
Recent studies on tumor genomes revealed that mutations in genes of replicative DNA polymerases cause a predisposition for cancer by increasing genome instability. The past 10 years have uncovered exciting details about the structure and function of replicative DNA polymerases and the replication fork organization. The principal idea of participation of different polymerases in specific transactions at the fork proposed by Morrison and coauthors 30 years ago and later named "division of labor," remains standing, with an amendment of the broader role of polymerase δ in the replication of both the lagging and leading DNA strands. However, cancer-associated mutations predominantly affect the catalytic subunit of polymerase ε that participates in leading strand DNA synthesis. We analyze how new findings in the DNA replication field help elucidate the polymerase variants' effects on cancer.
RESUMO
DNA editing deaminases (APOBECs) are implicated in generation of mutations in somatic cells during tumorigenesis. APOBEC-dependent mutagenesis is thought to occur during transient exposure of unprotected single-stranded DNA. Mutations frequently occur in clusters (kataegis). We investigated mechanisms of mutant generation in growing and resting diploid yeast expressing APOBEC from sea lamprey, PmCDA1, whose kataegistic effect was previously shown to be associated with transcription. We have found that the frequency of canavanine-resistant mutants kept raising after growth cessation, while the profile of transcription remained unchanged. Surprisingly, the overall number of mutations in the genomes did not elevate in resting cells. Thus, mutations were accumulated during vigorous growth stage with both intense replication and transcription. We found that the elevated recovery of can1 mutant clones in non-growing cells is the result of loss of heterozygosity (LOH) leading to clusters of homozygous mutations in the chromosomal regions distal to the reporter gene. We confirmed that recombination frequency in resting cells was elevated by orders of magnitude, suggesting that cells were transiently committed to meiotic levels of recombination, a process referred to in yeast genetics as return-to-growth. In its extreme, on day 6 of starvation, a few mutant clones were haploid, likely resulting from completed meiosis. Distribution of mutations along chromosomes indicated that PmCDA1 was active during ongoing recombination events and sometimes produced characteristic kataegis near initial breakpoints. AID and APOBEC1 behaved similar to PmCDA1. We conclude that replication, transcription, and mitotic recombination contribute to the recovered APOBEC-induced mutations in resting diploids. The mechanism is relevant to the initial stages of oncogenic transformation in terminally differentiated cells, when recombination may lead to the LOH exposing recessive mutations induced by APOBECs in cell's history and to acquisition of new mutations near original break.