Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Assunto principal
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Circadian Rhythms ; 22: 1, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38617711

RESUMO

Circadian Biology intersects with diverse scientific domains, intricately woven into the fabric of organismal physiology and behavior. The rhythmic orchestration of life by the circadian clock serves as a focal point for researchers across disciplines. This retrospective examination delves into several of the scientific milestones that have fundamentally shaped our contemporary understanding of circadian rhythms. From deciphering the complexities of clock genes at a cellular level to exploring the nuances of coupled oscillators in whole organism responses to stimuli. The field has undergone significant evolution lately guided by genetics approaches. Our exploration here considers key moments in the circadian-research landscape, elucidating the trajectory of this discipline with a keen eye on scientific advancements and paradigm shifts.

2.
J Circadian Rhythms ; 22: 2, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38617710

RESUMO

Chronobiology investigations have revealed much about cellular and physiological clockworks but we are far from having a complete mechanistic understanding of the physiological and ecological implications. Here we present some unresolved questions in circadian biology research as posed by the editorial staff and guest contributors to the Journal of Circadian Rhythms. This collection of ideas is not meant to be comprehensive but does reveal the breadth of our observations on emerging trends in chronobiology and circadian biology. It is amazing what could be achieved with various expected innovations in technologies, techniques, and mathematical tools that are being developed. We fully expect strengthening mechanistic work will be linked to health care and environmental understandings of circadian function. Now that most clock genes are known, linking these to physiological, metabolic, and developmental traits requires investigations from the single molecule to the terrestrial ecological scales. Real answers are expected for these questions over the next decade. Where are the circadian clocks at a cellular level? How are clocks coupled cellularly to generate organism level outcomes? How do communities of circadian organisms rhythmically interact with each other? In what way does the natural genetic variation in populations sculpt community behaviors? How will methods development for circadian research be used in disparate academic and commercial endeavors? These and other questions make it a very exciting time to be working as a chronobiologist.

3.
Front Endocrinol (Lausanne) ; 13: 964681, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36465660

RESUMO

Misalignment between the environment and one's circadian system is a common phenomenon (e.g., jet lag) which can have myriad negative effects on physical and mental health, mental and physiological performance, and sleep. Absent any intervention, the circadian system adjusts only 0.5-1.0 h per day to a shifted light-dark and sleep-wake schedule. Bright light facilitates circadian adjustment, but in field studies, bright light is only modestly better than no stimulus. Evidence indicates that exercise and melatonin can be combined with bright light to elicit larger shifts but no study has combined all of these stimuli or administered them at the times that are known to elicit the largest effects on the circadian system. The aims of this study are to compare the effects of different treatments on circadian adjustment to simulated jet lag in a laboratory. Following 2 weeks of home recording, 36 adults will spend 6.5 consecutive days in the laboratory. Following an 8 h period of baseline sleep recording on the participant's usual sleep schedule on Night 1 (e.g., 0000-0800 h), participants will undergo a 26 h circadian assessment protocol involving 2 h wake intervals in dim light and 1 h of sleep in darkness, repeated throughout the 26 h. During this protocol, all urine voidings will be collected; mood, sleepiness, psychomotor vigilance, and pain sensitivity will be assessed every 3 h, forehead temperature will be assessed every 90 min, and anaerobic performance (Wingate test) will be tested every 6 h. Following, the circadian assessment protocol, the participant's sleep-wake and light dark schedule will be delayed by 8 h compared with baseline (e.g., 0800-1400 h), analogous to travelling 8 times zones westward. This shifted schedule will be maintained for 3 days. During the 3 days on the delayed schedule, participants will be randomized to one of 3 treatments: (1) Dim Red Light + Placebo Capsules, (2) Bright Light Alone, (3) Bright Light + Exercise + Melatonin. During the final 26 h, all conditions and measures of the baseline circadian protocol will be repeated. Acclimatization will be defined by shifts in circadian rhythms of aMT6s, psychomotor vigilance, Wingate Anaerobic performance, mood, and sleepiness, and less impairments in these measures during the shifted schedule compared with baseline. We posit that Bright Light Alone and Bright Light + Exercise + Melatonin will elicit greater shifts in circadian rhythms and less impairments in sleep, mood, performance, and sleepiness compared with Dim Red Light + Placebo Capsules. We also posit that Bright Light + Exercise + Melatonin will elicit greater shifts and less impairments than Bright Light Alone.


Assuntos
Melatonina , Adulto , Humanos , Sonolência , Síndrome do Jet Lag , Sono , Aclimatação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA