Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Nanomedicine ; 24: 102126, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31734515

RESUMO

The development of antibacterial implant surfaces is a challenging task in biomaterial research. We fabricated a highly antibacterial bimetallic platinum (Pt)/silver(Ag) nanopatch surface by short time sputtering of Pt and Ag on titanium. The sputter process led to a patch-like distribution with crystalline areas in the nanometer-size range (1.3-3.9 nm thickness, 3-60 nm extension). Structural analyses of Pt/Ag samples showed Ag- and Pt-rich areas containing nanoparticle-like Pt deposits of 1-2 nm. The adhesion and proliferation properties of S. aureus on the nanopatch samples were analyzed. Consecutively sputtered Ag/Pt nanopatches (Pt followed by Ag) induced enhanced antimicrobial activity compared to co-sputtered Pt/Ag samples or pure Ag patches of similar Ag amounts. The underlying sacrificial anode mechanism was proved by linear sweep voltammetry. The advantages of this nanopatch coating are the enhanced antimicrobial activity despite a reduced total amount of Ag/Pt and a self-limited effect due the rapid Ag dissolution.


Assuntos
Antibacterianos , Membranas Artificiais , Nanoestruturas/química , Platina , Prata , Staphylococcus aureus/crescimento & desenvolvimento , Antibacterianos/química , Antibacterianos/farmacologia , Eletrodos , Platina/química , Platina/farmacologia , Prata/química , Prata/farmacologia
2.
Nanotechnology ; 30(30): 305101, 2019 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-30959494

RESUMO

Bimetallic alloyed silver-platinum nanoparticles (AgPt NP) with different metal composition from Ag10Pt90 to Ag90Pt10 in steps of 20 mol% were synthesized. The biological effects of AgPt NP, including cellular uptake, cell viability, osteogenic differentiation and osteoclastogenesis as well as the antimicrobial activity towards Staphylococcus aureus and Escherichia coli were analyzed in comparison to pure Ag NP and pure Pt NP. The uptake of NP into human mesenchymal stem cells was confirmed by cross-sectional focused-ion beam preparation and observation by scanning and transmission electron microscopy in combination with energy-dispersive x-ray analysis. Lower cytotoxicity and antimicrobial activity were observed for AgPt NP compared to pure Ag NP. Thus, an enhanced Ag ion release due to a possible sacrificial anode effect was not achieved. Nevertheless, a Ag content of at least 50 mol% was sufficient to induce bactericidal effects against both Staphylococcus aureus and Escherichia coli. In addition, a Pt-related (≥50 mol% Pt) osteo-promotive activity on human mesenchymal stem cells was observed by enhanced cell calcification and alkaline phosphatase activity. In contrast, the osteoclastogenesis of rat primary precursor osteoclasts was inhibited. In summary, these results demonstrate a combinatory osteo-promotive and antimicrobial activity of bimetallic Ag50Pt50 NP.


Assuntos
Antibacterianos/farmacologia , Nanopartículas Metálicas , Osteogênese/efeitos dos fármacos , Platina/farmacologia , Prata/farmacologia , Antibacterianos/química , Diferenciação Celular/efeitos dos fármacos , Linhagem Celular , Escherichia coli/efeitos dos fármacos , Infecções por Escherichia coli/tratamento farmacológico , Humanos , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/efeitos dos fármacos , Nanopartículas Metálicas/química , Platina/química , Prata/química , Infecções Estafilocócicas/tratamento farmacológico , Staphylococcus aureus/efeitos dos fármacos
3.
PLoS One ; 18(7): e0281321, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37428737

RESUMO

BACKGROUND: COVID-19 pandemic has changed people's lives around the world due to restrictive measures adopted by governments. The impact of this change on female sexuality needs to be further investigated, particularly between female doctors who are more at risk as they are directly involved with health care services. METHODS: An online survey has been filled out by female doctors. The questionnaire evaluates sexual function, depression, anxiety, burnout, sociodemographic and professional data, and it was answered during the peak of COVID-19 pandemic in Brazil. The main outcome is female doctors' sexual function during COVID-19 pandemic, which was evaluated by analyzing FSFI questionnaires. The secondary outcome is related to their mental health, assessed via depression, anxiety and burnout questionnaires. RESULTS: A sample of 388 female doctors filled out the questionnaire. The median age was 34.0 (29.0, 43.0) years old. The total FSFI median score was 23.8 [18.9, 26.8] with desire domain median of 5.0 [3.0, 7.0]. In our sample, 231 (59.5%) women had depression and/or anxiety, out of these, 191 (82.7%) had depression and 192 (83.2%), anxiety. From these samples of doctors with depression and/or anxiety, 183 (79.2%) had sexual dysfunction. CONCLUSION: This finding suggests that doctors are experiencing a high risk of sexual dysfunction and mental illness during the COVID-19 outbreak. A high index of depression and/or anxiety was shown in the studied population, with almost 80% of them reaching criteria for sexual dysfunction. Working in the frontline is related to worse mental health conditions. Depression and anxiety were found as potential mediators of burnout effect on sexual function.


Assuntos
Esgotamento Profissional , COVID-19 , Humanos , Feminino , Adulto , Masculino , COVID-19/epidemiologia , Saúde Mental , Pandemias , SARS-CoV-2 , Ansiedade/epidemiologia , Sexualidade , Esgotamento Profissional/epidemiologia , Depressão/epidemiologia
4.
Sci Rep ; 10(1): 21591, 2020 12 09.
Artigo em Inglês | MEDLINE | ID: mdl-33299057

RESUMO

Health risks from particles are a priority challenge to health protection at work. Despite the ubiquitous exposure to a wide range of particles and the many years of research in this field, there are fundamental unresolved questions regarding the prevention of particle-related respiratory diseases. Here, the highly relevant particulate material silicon dioxide was analyzed with emphasis on defined size and shape. Silica particles were prepared with different size and shape: Spheres (NS nanospheres 60 nm; SMS submicrospheres 230 nm; MS microspheres 430 nm) and rods (SMR submicrorods with d = 125 nm, L = 230 nm; aspect ratio 1:1.8; MR microrods with d = 100 nm, L = 600 nm; aspect ratio 1:6). After an in-depth physicochemical characterization, their effects on NR8383 alveolar macrophages were investigated. The particles were X-ray amorphous, well dispersed, and not agglomerated. Toxic effects were only observed at high concentrations, i.e. ≥ 200 µg mL-1, with the microparticles showing a stronger significant effect on toxicity (MS≈MR > SMR≈SMS≈NS) than the nanoparticles. Special attention was directed to effects in the subtoxic range (less than 50% cell death compared to untreated cells), i.e. below 100 µg mL-1 where chronic health effects may be expected. All particles were readily taken up by NR8383 cells within a few hours and mainly found associated with endolysosomes. At subtoxic levels, neither particle type induced strongly adverse effects, as probed by viability tests, detection of reactive oxygen species (ROS), protein microarrays, and cytokine release (IL-1ß, GDF-15, TNF-α, CXCL1). In the particle-induced cell migration assay (PICMA) with leukocytes (dHL-60 cells) and in cytokine release assays, only small effects were seen. In conclusion, at subtoxic concentrations, where chronic health effects may be expected, neither size and nor shape of the synthesized chemically identical silica particles showed harmful cell-biological effects.


Assuntos
Macrófagos Alveolares/efeitos dos fármacos , Microesferas , Nanosferas/administração & dosagem , Dióxido de Silício/administração & dosagem , Animais , Linhagem Celular , Movimento Celular/efeitos dos fármacos , Citocinas/metabolismo , Macrófagos Alveolares/metabolismo , Tamanho da Partícula , Ratos , Espécies Reativas de Oxigênio/metabolismo
5.
Nanomaterials (Basel) ; 9(1)2019 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-30621132

RESUMO

Cell-compatible and antibacterial surfaces are needed for implants, which frequently have complex and rough surfaces. Bio-inspired columnar nanostructures can be grown on flat substrates; however, the application of these nanostructures on clinically relevant, complex, and rough surfaces was pending. Therefore, a titanium plasma spray (TPS) implant surface was coated with titanium nano-spikes via glancing angle magnetron sputter deposition (GLAD) at room temperature. Using GLAD, it was possible to cover the three-dimensional, highly structured macroscopic surface (including cavities, niches, clefts, and curved areas) of the TPS homogeneously with nano-spikes (TPS+), creating a cell-compatible and antibacterial surface. The adherence and spreading of mesenchymal stem cells (MSC) were similar for TPS and TPS+ surfaces. However, MSC adherent to TPS+ expressed less and shorter pseudopodia. The induced osteogenic response of MSC was significantly increased in cells cultivated on TPS+ compared with TPS. In addition, Gram-negative bacteria (E. coli) adherent to the nano-spikes were partly destructed by a physico-mechanical mechanism; however, Gram-positive bacteria (S. aureus) were not significantly damaged.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA