RESUMO
BACKGROUND: There have been multiple efforts toward individual prediction of recurrent strokes based on structured clinical and imaging data using machine learning algorithms. Some of these efforts resulted in relatively accurate prediction models. However, acquiring clinical and imaging data is typically possible at provider sites only and is associated with additional costs. Therefore, we developed recurrent stroke prediction models based solely on data easily obtained from the patient at home. METHODS: Data from 384 patients with ischemic stroke were obtained from the Erlangen Stroke Registry. Patients were followed at 3 and 12 months after first stroke and then annually, for about 2 years on average. Multiple machine learning algorithms were applied to train predictive models for estimating individual risk of recurrent stroke within 1 year. Double nested cross-validation was utilized for conservative performance estimation and models' learning capabilities were assessed by learning curves. Predicted probabilities were calibrated, and relative variable importance was assessed using explainable artificial intelligence techniques. RESULTS: The best model achieved the area under the curve of 0.70 (95% CI, 0.64-0.76) and relatively good probability calibration. The most predictive factors included patient's family and housing circumstances, rehabilitative measures, age, high calorie diet, systolic and diastolic blood pressures, percutaneous endoscopic gastrotomy, number of family doctor's home visits, and patient's mental state. CONCLUSIONS: Developing fairly accurate models for individual risk prediction of recurrent ischemic stroke within 1 year solely based on registry data is feasible. Such models could be applied in a home setting to provide an initial risk assessment and identify high-risk patients early.
Assuntos
AVC Isquêmico , Acidente Vascular Cerebral , Inteligência Artificial , Humanos , Aprendizado de Máquina , Sistema de Registros , Acidente Vascular Cerebral/diagnóstico , Acidente Vascular Cerebral/epidemiologiaRESUMO
OBJECTIVES: Machine learning models can support an individualized approach in the choice of bDMARDs. We developed prediction models for 5 different bDMARDs using machine learning methods based on patient data derived from the Austrian Biologics Registry (BioReg). METHODS: Data from 1397 patients and 19 variables with at least 100 treat-to-target (t2t) courses per drug were derived from the BioReg biologics registry. Different machine learning algorithms were trained to predict the risk of ineffectiveness for each bDMARD within the first 26 weeks. Cross-validation and hyperparameter optimization were applied to generate the best models. Model quality was assessed by area under the receiver operating characteristic (AUROC). Using explainable AI (XAI), risk-reducing and risk-increasing factors were extracted. RESULTS: The best models per drug achieved an AUROC score of the following: abatacept, 0.66 (95% CI, 0.54-0.78); adalimumab, 0.70 (95% CI, 0.68-0.74); certolizumab, 0.84 (95% CI, 0.79-0.89); etanercept, 0.68 (95% CI, 0.55-0.87); tocilizumab, 0.72 (95% CI, 0.69-0.77). The most risk-increasing variables were visual analytic scores (VAS) for abatacept and etanercept and co-therapy with glucocorticoids for adalimumab. Dosage was the most important variable for certolizumab and associated with a lower risk of non-response. Some variables, such as gender and rheumatoid factor (RF), showed opposite impacts depending on the bDMARD. CONCLUSION: Ineffectiveness of biological drugs could be predicted with promising accuracy. Interestingly, individual parameters were found to be associated with drug responses in different directions, indicating highly complex interactions. Machine learning can be of help in the decision-process by disentangling these relations.
Assuntos
Antirreumáticos , Artrite Reumatoide , Produtos Biológicos , Humanos , Antirreumáticos/uso terapêutico , Etanercepte/uso terapêutico , Adalimumab/uso terapêutico , Abatacepte/uso terapêutico , Artrite Reumatoide/tratamento farmacológico , Áustria , Produtos Biológicos/uso terapêutico , Certolizumab Pegol/uso terapêutico , Sistema de Registros , Inteligência ArtificialRESUMO
BACKGROUND: Biological disease-modifying anti-rheumatic drugs (bDMARDs) can be tapered in some rheumatoid arthritis (RA) patients in sustained remission. The purpose of this study was to assess the feasibility of building a model to estimate the individual flare probability in RA patients tapering bDMARDs using machine learning methods. METHODS: Longitudinal clinical data of RA patients on bDMARDs from a randomized controlled trial of treatment withdrawal (RETRO) were used to build a predictive model to estimate the probability of a flare. Four basic machine learning models were trained, and their predictions were additionally combined to train an ensemble learning method, a stacking meta-classifier model to predict the individual flare probability within 14 weeks after each visit. Prediction performance was estimated using nested cross-validation as the area under the receiver operating curve (AUROC). Predictor importance was estimated using the permutation importance approach. RESULTS: Data of 135 visits from 41 patients were included. A model selection approach based on nested cross-validation was implemented to find the most suitable modeling formalism for the flare prediction task as well as the optimal model hyper-parameters. Moreover, an approach based on stacking different classifiers was successfully applied to create a powerful and flexible prediction model with the final measured AUROC of 0.81 (95%CI 0.73-0.89). The percent dose change of bDMARDs, clinical disease activity (DAS-28 ESR), disease duration, and inflammatory markers were the most important predictors of a flare. CONCLUSION: Machine learning methods were deemed feasible to predict flares after tapering bDMARDs in RA patients in sustained remission.