Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 59
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Plant J ; 117(4): 1264-1280, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37964640

RESUMO

Rosa roxburghii and Rosa sterilis, two species belonging to the Rosaceae family, are widespread in the southwest of China. These species have gained recognition for their remarkable abundance of ascorbate in their fresh fruits, making them an ideal vitamin C resource. In this study, we generated two high-quality chromosome-scale genome assemblies for R. roxburghii and R. sterilis, with genome sizes of 504 and 981.2 Mb, respectively. Notably, we present a haplotype-resolved, chromosome-scale assembly for diploid R. sterilis. Our results indicated that R. sterilis originated from the hybridization of R. roxburghii and R. longicuspis. Genome analysis revealed the absence of recent whole-genome duplications in both species and identified a series of duplicated genes that possibly contributing to the accumulation of flavonoids. We identified two genes in the ascorbate synthesis pathway, GGP and GalLDH, that show signs of positive selection, along with high expression levels of GDP-d-mannose 3', 5'-epimerase (GME) and GDP-l-galactose phosphorylase (GGP) during fruit development. Furthermore, through co-expression network analysis, we identified key hub genes (MYB5 and bZIP) that likely regulate genes in the ascorbate synthesis pathway, promoting ascorbate biosynthesis. Additionally, we observed the expansion of terpene synthase genes in these two species and tissue expression patterns, suggesting their involvement in terpenoid biosynthesis. Our research provides valuable insights into genome evolution and the molecular basis of the high concentration of ascorbate in these two Rosa species.


Assuntos
Rosa , Rosa/genética , Rosa/metabolismo , Ácido Ascórbico/metabolismo , Genes de Plantas , Cromossomos , Evolução Molecular
2.
Int J Cancer ; 155(4): 646-653, 2024 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-38598851

RESUMO

Nasopharyngeal carcinoma (NPC) has a unique geographic distribution. It is unknown whether meteorological factors are related to the incidence of NPC. To investigate the effect of ambient temperature, relative humidity (RH), and absolute humidity (AH) on the incidence of NPC, we collected the incidence rate of NPC in 2016 and meteorological data from 2006 to 2016 from 484 cities and counties across 31 provinces in China. Generalized additive models with quasi-Poisson regression and generalized linear models with natural cubic splines were employed respectively to elucidate the nonlinear relationships and specify the partial linear relationships. Subgroup and interactive analysis were also conducted. Temperature (R2 = 0.68, p < .001), RH (R2 = 0.47, p < .001), and AH (R2 = 0.70, p < .001) exhibited nonlinear correlations with NPC incidence rate. The risk of NPC incidence increased by 20.3% (95% confidence intervals [CI]: [18.9%, 21.7%]) per 1°C increase in temperature, by 6.3% (95% CI: [5.3%, 7.2%]) per 1% increase in RH, and by 32.2% (95% CI: [30.7%, 33.7%]) per 1 g/m3 increase in AH, between their the 25th and the 99th percentiles. In addition, the combination of low temperature and low RH was also related to increased risk (relative risk: 1.60, 95% CI: [1.18, 2.17]). Males and eastern or rural populations tended to be more vulnerable. In summary, this study suggests that ambient temperature, RH, and particularly AH are associated with the risk of NPC incidence.


Assuntos
Umidade , Carcinoma Nasofaríngeo , Neoplasias Nasofaríngeas , Temperatura , Humanos , China/epidemiologia , Masculino , Incidência , Carcinoma Nasofaríngeo/epidemiologia , Carcinoma Nasofaríngeo/etiologia , Feminino , Neoplasias Nasofaríngeas/epidemiologia , Neoplasias Nasofaríngeas/etiologia , Pessoa de Meia-Idade , Fatores de Risco , Adulto
3.
J Appl Clin Med Phys ; 25(3): e14194, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37910655

RESUMO

BACKGROUND: Breast cancer is now the most commonly diagnosed cancer in women worldwide. Radiotherapy is an important part of the treatment for breast cancer, while setting proper number of fields dramatically affects the benefits one can receive. Machine learning and radiomics have been widely investigated in the management of breast cancer. This study aims to provide models to predict the best number of fields based on machine learning and improve the prediction performance by adding clinical factors. METHODS: Two-hundred forty-two breast cancer patients were retrospectively enrolled for this study, all of whom received postoperative intensity modulated radiation therapy. The patients were randomized into a training set and a validation set at a ratio of 7:3. Radiomics shape features were extracted for eight machine learning algorithms to predict the number of fields. Univariate and multivariable logistic regression were implemented to screen clinical factors. A combined model of rad-score and clinical factors were finally constructed. The area under receiver operating characteristic curve, precision, recall, F1 measure and accuracy were used to evaluate the model. RESULTS: Random Forest outperformed from eight machine learning algorithms while predicting the number of fields. Prediction performance of the radiomics model was better than the clinical model, while the predictive nomogram combining the rad-score and clinical factors performed the best. CONCLUSIONS: The model combining rad-score and clinical factors performed the best. Nomograms constructed from the combined models can be of reliable references for medical dosimetrists.


Assuntos
Neoplasias da Mama , Radioterapia de Intensidade Modulada , Humanos , Feminino , Neoplasias da Mama/radioterapia , Neoplasias da Mama/cirurgia , Nomogramas , Radiômica , Estudos Retrospectivos , Aprendizado de Máquina
4.
Int J Mol Sci ; 25(10)2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38791136

RESUMO

DNA methylation is an important mechanism for epigenetic modifications that have been shown to be associated with responses to plant development. Previous studies found that inverted Populus yunnanensis cuttings were still viable and could develop into complete plants. However, the growth status of inverted cuttings was weaker than that of upright cuttings, and the sprouting time of inverted cuttings was later than that of upright cuttings. There is currently no research on DNA methylation patterns in inverted cuttings of Populus yunnanensis. In this study, we detected genome-wide methylation patterns of stem tips of Populus yunnanensis at the early growth stage and the rapid growth stage by Oxford Nanopore Technologies (ONT) methylation sequencing. We found that the methylation levels of CpG, CHG, CHH, and 6mA were 41.34%, 33.79%, 17.27%, and 12.90%, respectively, in the genome of inverted poplar cuttings, while the methylation levels of the four methylation types were higher in the genome of upright poplar cuttings than in inverted cuttings, 41.90%, 34.57%, 18.09%, and 14.11%, suggesting important roles for DNA methylation in poplar cells. In all comparison groups, CpG-type methylation genes in the Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway were annotated to pathways associated with carbon metabolism, ribosome biogenesis in eukaryotes, glycolysis/gluconeogenesis, pyruvate metabolism, and mRNA detection pathways, suggesting that different biological processes are activated in upright and inverted cuttings. The results show that methylation genes are commonly present in the poplar genome, but only a few of them are involved in the regulation of expression in the growth and development of inverted cuttings. From this, we screened the DET2 gene for significant differences in methylation levels in upright or inverted cuttings. The DET2 gene is a key gene in the Brassinolide (BRs) synthesis pathway, and BRs have an important influence on the growth and development process of plants. These results provide important clues for studying DNA methylation patterns in P. yunnanensis.


Assuntos
Metilação de DNA , Regulação da Expressão Gênica de Plantas , Populus , Populus/genética , Populus/crescimento & desenvolvimento , Populus/metabolismo , Epigênese Genética , Genoma de Planta , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
5.
BMC Genomics ; 24(1): 56, 2023 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-36721120

RESUMO

BACKGROUND: Toxicodendron vernicifluum, belonging to the family Anacardiaceae, is an important commercial arbor species, which can provide us with the raw lacquer, an excellent adhesive and painting material used to make lacquer ware. Compared with diploid, triploid lacquer tree has a higher yield of raw lacquer and stronger resistance to stress. Triploid T. vernicifluum was a newly discovered natural triploid lacquer tree. However, the taxonomy of triploid T. vernicifluum has remained uncertain. Here, we sequenced and analyzed the complete chloroplast (cp) genome of triploid T. vernicifluum and compared it with related species of Toxicodendron genus based on chloroplast genome and SSR markers. RESULTS: The plastome of triploid T. vernicifluum is 158,221 bp in length, including a pair of inverted repeats (IRs) of 26,462 bp, separated by a large single-copy region of 86,951 bp and a small single-copy region of 18,346 bp. In total, 132 genes including 87 protein-coding genes, 37 tRNA genes and 8 rRNA genes were identified in the triploid T. vernicifluum. Among these, 16 genes were duplicated in the IR regions, 14 genes contain one intron, while three genes contain two introns. After nucleotide substitutions, seven small inversions were analyzed in the chloroplast genomes, eight hotspot regions were found, which could be useful molecular genetic markers for future population genetics. Phylogenetic analyses showed that triploid T. vernicifluum was a sister to T. vernicifluum cv. Dahongpao and T. vernicifluum cv. Hongpigaobachi. Moreover, phylogenetic clustering based on the SSR markers showed that all the samples of triploid T. vernicifluum, T. vernicifluum cv. Dahongpao and T. vernicifluum cv. Hongpigaobachi in one group, while the samples of T. vernicifluum and T. succedaneum in another group, which is consistent with the cp genome and morphological analysis. CONCLUSIONS: The current genomic datasets provide pivotal genetic resources to determine the phylogenetic relationships, variety identification, breeding and resource exploitation, and future genetic diversity-related studies of T. vernicifluum.


Assuntos
Genoma de Cloroplastos , Toxicodendron , Triploidia , Laca , Filogenia , Melhoramento Vegetal
6.
IUBMB Life ; 75(9): 702-716, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-36973940

RESUMO

The long non-coding RNA (lncRNA)-microRNA (miRNA) interaction network plays a crucial part in the pathogenesis of nasopharyngeal carcinoma (NPC). Here, we discovered a relationship between LINC01376 and miR-4757 in NPC tumor development. First, LINC01376 was abnormally overexpressed in NPC tissues and cells, and its elevated expression was associated with advanced clinical stage and shorter distant metastasis-free survival time. Moreover, biological experiments showed that LINC01376 facilitated the proliferative, invasive, and migratory abilities of NPC cells in vitro and in vivo. Mechanistically, bioinformatics and RT-qPCR assays revealed that LINC01376 knockdown upregulated the expression level of downstream miR-4757, including miR-4757 primary transcript (pri-miR-4757) and mature miR-4757. Furthermore, LINC01376 competitively sponged the transcription factor SP1 and reduced its enrichment in the upstream promoter region of miR-4757 to repress miR-4757 expression. Finally, insulin-like growth factor 1(IGF1) was identified as the target of miR-4757. Rescue experiments indicated that LINC01376 accelerated NPC cell proliferation, migration, and invasion through the miR-4757-5p/IGF1 axis. In conclusion, the SP1/miR-4757/IGF1 axis, which is regulated by LINC01376 in NPC deterioration and metastasis, is expected to provide new insights into the molecular mechanism of NPC carcinogenesis.


Assuntos
MicroRNAs , Neoplasias Nasofaríngeas , RNA Longo não Codificante , Humanos , Carcinoma Nasofaríngeo/genética , Carcinoma Nasofaríngeo/metabolismo , Fator de Crescimento Insulin-Like I/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Neoplasias Nasofaríngeas/genética , Neoplasias Nasofaríngeas/patologia , Carcinogênese/genética , Transformação Celular Neoplásica/genética , Proliferação de Células/genética , Movimento Celular/genética , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Linhagem Celular Tumoral , Regulação Neoplásica da Expressão Gênica
7.
BMC Cancer ; 23(1): 117, 2023 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-36737723

RESUMO

BACKGROUND: Recurrence due to the development of radioresistance remains a major challenge in the clinical management of nasopharyngeal carcinoma. The objective of this study was to increase the sensitivity of nasopharyngeal carcinoma cells to ionizing radiation by enhancing oxidative stress and ferroptosis caused by disrupting the mitochondrial anti-oxidant enzyme system. METHODS: Oxidative stress cell model was constructed by SOD2 knockdown using shRNA. The expression and activity of DHODH was suppressed by siRNA and brequinar in SOD2 depleted cells. Protein levels were determined by western blotting and ferroptosis was assessed by C11 BODIPY and malondialdehyde assay. Cell viability was evaluated using CCK-8 assay while radiotoxicity was assessed by colony formation assay. Cellular ATP level was determined by ATP assay kits, ROS was determined by DCFD and DHE, while mitochondrial oxygen consumption was determined by seahorse assay. Data were analyzed by two-tailed independent t-test. RESULTS: Radiation upregulated SOD2 expression and SOD2 depletion increased cellular O2.-, malondialdehyde, and the fluorescence intensity of oxidized C11 BODIPY. It also resulted in mitochondrial damage. Its depletion decreased colony formation both under ionizing and non-ionizing radiation conditions. The ferroptosis inhibitor, deferoxamine, rescued cell viability and colony formation in SOD2 depleted cells. Cellular level of malondialdehyde, fluorescence intensity of oxidized C11 BODIPY, O2.- level, ATP, and mitochondrial oxygen consumption decreased following DHODH inhibition in SOD2 depleted cells. Cell viability and colony formation was rescued by DHODH inhibition in SOD2 depleted cells. CONCLUSION: Inducing oxidative stress by SOD2 inhibition sensitized nasopharyngeal carcinoma cells to ionizing radiation via ferroptosis induction. This was found to be dependent on DHODH activity. This suggests that DHODH inhibitors should be used with caution during radiotherapy in nasopharyngeal carcinoma patients.


Assuntos
Ferroptose , Neoplasias Nasofaríngeas , Humanos , Trifosfato de Adenosina , Linhagem Celular Tumoral , Di-Hidro-Orotato Desidrogenase , Carcinoma Nasofaríngeo/radioterapia , Carcinoma Nasofaríngeo/metabolismo , Neoplasias Nasofaríngeas/genética , Neoplasias Nasofaríngeas/radioterapia , Neoplasias Nasofaríngeas/metabolismo , Tolerância a Radiação/genética , Espécies Reativas de Oxigênio/metabolismo , RNA Interferente Pequeno/genética
8.
Physiol Plant ; 175(3): e13943, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37260122

RESUMO

MYB transcriptional regulators belong to one of the most significant transcription factors families in plants, among which R2R3-MYB transcription factors are involved in plant growth and development, hormone signal transduction, and stress response. Two R2R3-MYB transcription factors, FLP and its paralogous AtMYB88, redundantly regulate the symmetrical division of guard mother cells (GMCs), and abiotic stress response in Arabidopsis thaliana. Only one orthologue gene of FLP was identified in pea (Pisum sativum FLP; PsFLP). In this study, we explored the gene function of PsFLP by virus-induced gene silencing (VIGS) technology. The phenotypic analysis displayed that the silencing of PsFLP expression led to the abnormal development of stomata and the emergence of multiple guard cells tightly united. In addition, the abnormal stomata of flp could be fully rescued by PsFLP driven by the FLP promoter. In conclusion, the results showed that PsFLP plays a conservative negative role in regulating the symmetric division of GMC during stomatal development. Based on real-time quantitative PCR, the relative expressions of AAO3, NCED3, and SnRK2.3 significantly increased in the flp pFLP::PsFLP plants compared to mutant, indicating that PsFLP might be involved in drought stress response. Thus, PsFLP regulates the genes related to cell cycle division during the stomatal development of peas and participates in response to drought stress. The study provides a basis for further research on its function and application in leguminous crop breeding.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Pisum sativum/genética , Pisum sativum/metabolismo , Regulação da Expressão Gênica de Plantas/genética , Arabidopsis/metabolismo , Células-Tronco/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
9.
Int J Mol Sci ; 24(19)2023 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-37834105

RESUMO

Having a spiral grain is considered to be one of the most important wood properties influencing wood quality. Here, transcriptome profiles and metabolome data were analyzed in the straight grain and twist grain of Pinus yunnanensis. A total of 6644 differential expression genes were found between the straight type and the twist type. A total of 126 differentially accumulated metabolites were detected. There were 24 common differential pathways identified from the transcriptome and metabolome, and these pathways were mainly annotated in ABC transporters, arginine and proline metabolism, flavonoid biosynthesis, isoquinoline alkaloid biosynthesis, linoleic acid metabolism, phenylpropanoid, tryptophan metabolism, etc. A weighted gene coexpression network analysis showed that the lightblue4 module was significantly correlated with 2'-deoxyuridine and that transcription factors (basic leucine zipper (bZIP), homeodomain leucine zipper (HD-ZIP), basic helix-loop-helix (bHLH), p-coumarate 3-hydroxylase (C3H), and N-acetylcysteine (NAC)) play important roles in regulating 2'-deoxyuridine, which may be involved in the formation of spiral grains. Meanwhile, the signal transduction of hormones may be related to spiral grain, as previously reported. ARF7 and MKK4_5, as indoleacetic acid (IAA)- and ethylene (ET)-related receptors, may explain the contribution of plant hormones in spiral grain. This study provided useful information on spiral grain in P. yunnanensis by transcriptome and metabolome analyses and could lay the foundation for future molecular breeding.


Assuntos
Pinus , Transcriptoma , Pinus/genética , Perfilação da Expressão Gênica , Metabolômica , Metaboloma , Grão Comestível/genética , Desoxiuridina , Regulação da Expressão Gênica de Plantas
10.
Respir Res ; 22(1): 22, 2021 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-33468121

RESUMO

BACKGROUND: Increasing evidence shows that endothelial apoptosis contributes to cigarette smoke (CS)-induced disease progression, such as chronic obstructive pulmonary disease (COPD). Our previous studies have validated Notch1 as an anti-apoptotic signaling in CS-induced endothelial apoptosis. Resveratrol (RESV) is a naturally occurring polyphenol that exhibits an anti-apoptotic activity in endothelial cells that exposed to many kinds of destructive stimulus. However, the effects of resveratrol on Notch1 signaling in CS-induced endothelial apoptosis have not yet been fully elucidated. Therefore, the aim of this study was to examine whether RESV can protect endothelial cells from CS-induced apoptosis via regulating Notch1 signaling. METHODS: Human umbilical vein endothelial cells (HUVECs) were pretreated with RESV for 2 h, followed by cotreatment with 2.5%CSE for 24 h to explore the role of RESV in CSE induced endothelial apoptosis. 3-methyladenine (3-MA) or rapamycin was used to alter autophagic levels. Lentivirus Notch1 intracellular domain (LV-N1ICD), γ-secretase inhibitor (DAPT) and Notch1 siRNA were used to change Notch1 expression. The expression of Notch1, autophagic and apoptotic markers were examined by Western blot and the apoptosis rate was detected by Flow cytometry analysis. RESULTS: Our results showed that activating autophagy reduced CSE-induced endothelial apoptosis, while blocking autophagy promoted cell apoptosis in HUVECs. RESV pretreatment attenuated the CSE-induced endothelial apoptosis and activated Notch1 signaling. RESV pretreatment also increased LC3b-II and Beclin1 production, decreased p62 and mTOR expression. 3-MA treatment inhibited autophagy and aggravated CSE induced apoptosis, while rapamycin promoted autophagy, led to a decrease in cell apoptosis. LV-N1ICD transfection upregulated autophagy and reduced apoptosis. However, this protective effect was abolished by 3-MA treatment. In cells treated with DAPT or Notch1 siRNA, autophagy was decreased, while apoptosis was increased. RESV partly rescued the DAPT or Notch1 siRNA induced apoptosis by activating Notch1 signaling. CONCLUSION: In HUVECs, RESV attenuates CSE induced endothelial apoptosis by inducing autophagy in a Notch1-dependent manner.


Assuntos
Apoptose/fisiologia , Autofagia/fisiologia , Células Endoteliais da Veia Umbilical Humana/metabolismo , Receptor Notch1/metabolismo , Resveratrol/farmacologia , Fumaça/efeitos adversos , Antioxidantes/farmacologia , Apoptose/efeitos dos fármacos , Autofagia/efeitos dos fármacos , Fumar Cigarros/efeitos adversos , Fumar Cigarros/metabolismo , Células Endoteliais/efeitos dos fármacos , Células Endoteliais/metabolismo , Células Endoteliais da Veia Umbilical Humana/efeitos dos fármacos , Humanos , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/fisiologia
11.
Cancer ; 126(9): 2024-2033, 2020 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-31999837

RESUMO

BACKGROUND: The major clinical obstacle that limits the long-term benefits of treatment with osimertinib (AZD9291) in patients with epidermal growth factor receptor-mutant non-small cell lung cancer is the development of acquired resistance. Therefore, effective strategies that can overcome acquired resistance to osimertinib are urgently needed. The authors' current efforts in this direction have identified LBH589 (panobinostat), a clinically used histone deacetylase inhibitor, as a potential agent in overcoming osimertinib resistance. METHODS: Cell growth and apoptosis in vitro were evaluated by measuring cell numbers and colony formation and by detecting annexin V-positive cells and protein cleavage, respectively. Drug effects on tumor growth in vivo were assessed with xenografts in nude mice. Alterations of tested proteins in cells were monitored with Western blot analysis. Gene knockout was achieved using the CRISPR/Cas9 technique. RESULTS: The combination of LBH589 and osimertinib synergistically decreased the survival of different osimertinib-resistant cell lines, including those harboring C797S mutations, with greater inhibition of cell colony formation and growth. The combination enhanced the induction of apoptosis in osimertinib-resistant cells. Importantly, the combination effectively inhibited the growth of osimertinib-resistant xenograft tumors in nude mice. Mechanistically, the combination of LBH589 and osimertinib enhanced the elevation of Bim in osimertinib-resistant cells. Knockout of Bim in osimertinib-resistant cells substantially attenuated or abolished apoptosis enhanced by the LBH589 and osimertinib combination. These results collectively support a critical role of Bim elevation in the induction of apoptosis of osimertinib-resistant cells for this combination. CONCLUSIONS: The current findings provide strong preclinical evidence in support of the potential for LBH589 to overcome osimertinib resistance in the clinic.


Assuntos
Acrilamidas/uso terapêutico , Compostos de Anilina/uso terapêutico , Antineoplásicos/uso terapêutico , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Inibidores de Histona Desacetilases/uso terapêutico , Neoplasias Pulmonares/tratamento farmacológico , Mutação , Panobinostat/uso terapêutico , Inibidores de Proteínas Quinases/uso terapêutico , Acrilamidas/administração & dosagem , Compostos de Anilina/administração & dosagem , Antineoplásicos/administração & dosagem , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Linhagem Celular Tumoral , Quimioterapia Combinada , Receptores ErbB/genética , Inibidores de Histona Desacetilases/administração & dosagem , Humanos , Neoplasias Pulmonares/metabolismo , Panobinostat/administração & dosagem , Inibidores de Proteínas Quinases/administração & dosagem
12.
J Cell Biochem ; 120(4): 6250-6263, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30362164

RESUMO

MicroRNA-32 (miR-32) functioned as a tumor oncogene in some cancer, which control genes involved in important biological and pathological functions and facilitate the tumor growth and metastasis. However, the role of miR-32 modulates esophageal squamous cell carcinoma (ESCC) malignant transformation has not been clarified. Here, we focused on the function and the underlying molecular mechanism of miR-32 in ESCC. Results discovered a significant increased expression of miR-32 in ESCC tissues and cells. Downregulation of miR-32 inhibited the migration, invasion, adhesion of ESCC cell lines (EC9706 and KYSE450), and the levels of EMT protein in vitro. In vivo, miR-32 inhibitors decrease tumor size, tumor weight, and the number of metastatic nodules. Hematoxylin and eosin (H&E) results revealed that inhibition of miR-32 attenuate lung metastasis. Immunohistochemistry and immunofluorescence assay showed increased level of E-cadherin and decreased level of N-cadherin and Vimentin with treatment of miR-32 inhibitors. Furthermore, miR-32 targeted the 3'-untranslated region (3'-UTR) of CXXC5, and inhibited the level of mRNA and protein of CXXC5. There is a negative correlation between the expressions of CXXC5 and miR-32. Then, after EC9706 and KYSE450 cells cotransfected with si-CXXC5 and miR-32 inhibitors, the ability of cell migration, invasion, and adhesion was significantly reduced. In addition, the protein expression of EMT and TGF-ß signaling was also depressed. Collectively, these data supply an insight into the positive role of miR-32 in ESCC progression and metastasis, and its biological effects may attribute the inhibition of TGF-ß signaling mediated by CXXC5.


Assuntos
Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Neoplasias Esofágicas/patologia , Carcinoma de Células Escamosas do Esôfago/patologia , MicroRNAs/genética , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Regulação para Cima , Regiões 3' não Traduzidas , Linhagem Celular Tumoral , Proliferação de Células , Transição Epitelial-Mesenquimal , Neoplasias Esofágicas/metabolismo , Carcinoma de Células Escamosas do Esôfago/genética , Carcinoma de Células Escamosas do Esôfago/metabolismo , Feminino , Regulação Neoplásica da Expressão Gênica , Humanos , Masculino , Invasividade Neoplásica , Transdução de Sinais , Fator de Crescimento Transformador beta/metabolismo
13.
Respir Res ; 19(1): 21, 2018 01 26.
Artigo em Inglês | MEDLINE | ID: mdl-29373969

RESUMO

BACKGROUND: Abnormal apoptosis of lung endothelial cells has been observed in emphysematous lung tissue and has been suggested to be an important upstream event in the pathogenesis of chronic obstructive pulmonary disease (COPD). Studies have shown that microRNAs (miRNAs) contribute to the pathogenesis of pulmonary diseases by regulating cell apoptosis. The present study was designed to investigate the expression of microRNA-34a (miR-34a) in human pulmonary microvascular endothelial cells (HPMECs) exposed to cigarette smoke extract (CSE), and the potential regulatory role of miR-34a in endothelial cell apoptosis. RESULTS: Our results showed that the expression of miR-34a was significantly increased in CSE-treated HPMECs, and inhibiting miR-34a attenuated CSE-induced HPMEC apoptosis. Furthermore, expression of Notch-1, a receptor protein in the Notch signalling pathway, was decreased and was inversely correlated with miR-34a expression in HPMECs treated with CSE. Computational miRNA target prediction confirmed that Notch-1 is a target of miR-34a. Luciferase reporter assay further confirmed the direct interaction between miR-34a and the 3'-untranslated region (UTR) of Notch-1. Restoration of Notch-1 pathway was able to partially block the effect of miR-34a on HPMEC apoptosis. These results indicate that Notch-1 is a critical downstream target of miR-34a in regulating the CSE-induced HPMEC apoptosis. CONCLUSIONS: Our results suggest that miR-34a plays a key role in CSE-induced endothelial cell apoptosis by directly regulating its target gene Notch-1 in endothelial cells.


Assuntos
Apoptose/fisiologia , MicroRNAs/biossíntese , Microvasos/metabolismo , Receptor Notch1/biossíntese , Mucosa Respiratória/metabolismo , Poluição por Fumaça de Tabaco/efeitos adversos , Apoptose/efeitos dos fármacos , Linhagem Celular , Fumar Cigarros/efeitos adversos , Humanos , Microvasos/efeitos dos fármacos , Receptor Notch1/antagonistas & inibidores , Mucosa Respiratória/efeitos dos fármacos , Mucosa Respiratória/patologia
15.
J Cell Mol Med ; 21(9): 1929-1943, 2017 09.
Artigo em Inglês | MEDLINE | ID: mdl-28411377

RESUMO

MDR1 is highly expressed in MDR A2780DX5 ovarian cancer cells, MDR SGC7901R gastric cancer cells and recurrent tumours. It pumps cytoplasmic agents out of cells, leading to decreased drug accumulation in cells and making cancer cells susceptible to multidrug resistance. Here, we identified that miR-495 was predicted to target ABCB1, which encodes protein MDR1. To reduce the drug efflux and reverse MDR in cancer cells, we overexpressed a miR-495 mimic in SGC7901R and A2780DX cells and in transplanted MDR ovarian tumours in vivo. The results indicated that the expression of MDR1 in the above cells or tumours was suppressed and that subsequently the drug accumulation in the MDR cells was decreased, cell death was increased, and tumour growth was inhibited after treatment with taxol-doxorubicin, demonstrating increased drug sensitivity. This study suggests that pre-treatment with miR-495 before chemotherapy could improve the curative effect on MDR1-based MDR cancer.


Assuntos
Membro 1 da Subfamília B de Cassetes de Ligação de ATP/genética , Doxorrubicina/farmacologia , Resistência a Múltiplos Medicamentos/genética , Resistencia a Medicamentos Antineoplásicos/genética , MicroRNAs/metabolismo , Paclitaxel/farmacologia , Membro 1 da Subfamília B de Cassetes de Ligação de ATP/metabolismo , Animais , Sequência de Bases , Linhagem Celular Tumoral , Regulação para Baixo/efeitos dos fármacos , Resistência a Múltiplos Medicamentos/efeitos dos fármacos , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Camundongos Endogâmicos BALB C , MicroRNAs/genética , Interferência de RNA , Rifampina/farmacologia
16.
Biochem J ; 473(14): 2131-9, 2016 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-27208176

RESUMO

Cell proliferation was inhibited following forced over-expression of miR-30a in the ovary cancer cell line A2780DX5 and the gastric cancer cell line SGC7901R. Interestingly, miR-30a targets the DNA replication protein RPA1, hinders the replication of DNA and induces DNA fragmentation. Furthermore, ataxia telangiectasia mutated (ATM) and checkpoint kinase 2 (CHK2) were phosphorylated after DNA damage, which induced p53 expression, thus triggering the S-phase checkpoint, arresting cell cycle progression and ultimately initiating cancer cell apoptosis. Therefore, forced miR-30a over-expression in cancer cells can be a potential way to inhibit tumour development.


Assuntos
Proliferação de Células/fisiologia , Replicação do DNA/fisiologia , MicroRNAs/fisiologia , Proteína de Replicação A/metabolismo , Apoptose/genética , Apoptose/fisiologia , Proteínas Mutadas de Ataxia Telangiectasia/genética , Proteínas Mutadas de Ataxia Telangiectasia/metabolismo , Ciclo Celular/genética , Ciclo Celular/fisiologia , Linhagem Celular Tumoral , Proliferação de Células/genética , Senescência Celular/genética , Senescência Celular/fisiologia , Quinase do Ponto de Checagem 2/genética , Quinase do Ponto de Checagem 2/metabolismo , Ensaio Cometa , Replicação do DNA/genética , Histonas/metabolismo , Humanos , Imuno-Histoquímica , MicroRNAs/genética , MicroRNAs/metabolismo , Interferência de RNA/fisiologia , Proteína de Replicação A/genética
17.
Exp Cell Res ; 338(2): 232-8, 2015 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-26297956

RESUMO

MiR-145 is downregulated and functions as a tumor suppressor in many malignancies. In this study, the biological function, molecular mechanism, and direct target genes of miR-145 in nasopharyngeal carcinoma (NPC) cells were investigated. Cell survival was detected by cell viability assay, and cell cycle was determined through flow cytometry. Invasion and migration of NPC cells were examined using cell invasion and wound healing assays, respectively. A disintegrin and metalloproteinase 17 (ADAM17) was verified as the target of miR-145 through luciferase reporter assay, qRT-PCR, and Western blot analysis. In NPC cell lines, miR-145 expression was significantly downregulated and ADAM17 protein expression was upregulated. ADAM17 was downregulated at the post-transcriptional level by miR-145 via the binding site of ADAM17-3'UTR. Transfection with miR-145 mimic suppressed cell growth and induced cell cycle arrest in the G0/G1 phase by upregulating key G0/G1 phase regulators, namely, p53 and p21. MiR-145 also inhibited cellular migration and invasion through targeting ADAM17 involving the regulation of EGFR and E-cadherin. Knockdown of ADAM17 elicited similar effects to that of miR-145 on NPC cells. This study reveals that miR-145 suppressed the invasion and migration of NPC cells by targeting ADAM17. Thus, miR-145 could be a therapeutic target for NPC.


Assuntos
Proteínas ADAM/genética , Movimento Celular/genética , MicroRNAs/genética , Neoplasias Nasofaríngeas/genética , Invasividade Neoplásica/genética , Regiões 3' não Traduzidas/genética , Proteína ADAM17 , Caderinas/genética , Carcinoma , Linhagem Celular Tumoral , Regulação para Baixo/genética , Receptores ErbB/genética , Pontos de Checagem da Fase G1 do Ciclo Celular/genética , Regulação Neoplásica da Expressão Gênica/genética , Humanos , Carcinoma Nasofaríngeo , Neoplasias Nasofaríngeas/patologia , Invasividade Neoplásica/patologia , Processamento Pós-Transcricional do RNA/genética , Fase de Repouso do Ciclo Celular/genética , Regulação para Cima/genética
18.
J Med Case Rep ; 18(1): 139, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38561839

RESUMO

INTRODUCTION: Although esophageal bronchogenic cysts are benign diseases, they may be accompanied by serious complications and have the possibility of recurrence. Therefore, once confirmed, it is necessary to treat the esophagobronchial cyst when the contraindication is excluded. Endoscopic treatment is usually used for lesions with small diameter and shallow origin, and has the advantages of small surgical trauma and risk, which can reduce the psychological burden of patients to a certain extent, help them to recover quickly, and lower hospital costs. CASE PRESENTATION: Case 1 is a 54-year-old Han Chinese man admitted to our hospital who complained of difficulty swallowing in the past 6 months. Case 2 is a 41-year-old Han Chinese man who was hospitalized in the past 3 months due to chest discomfort. Endoscopic ultrasound revealed a hypoechoic cystic lesion arising from the muscularis propria. Submucosal tunneling endoscopic resection was performed using a dual knife, and a cystic mass was observed between the mucosa and the muscular layers of the esophagus. On locating the cyst, an incision was made on the oral side of the lesion for evacuation. The cyst wall was excised using endoscopic argon plasma coagulation. We successfully removed the esophageal bronchogenic cyst lesion in the intrinsic muscle layer using submucosal tunneling endoscopic resection. CONCLUSION: Esophageal bronchogenic cysts are rare in clinical practice and lack specificity in clinical manifestations. Multiple methods can be used to determine the location and nature of the lesion and ultimately determine the treatment plan. Surgical resection and endoscopic treatment are two different treatment methods, and appropriate treatment plans need to be selected on the basis of the origin layer, size, and relationship with the esophagus of the lesion to reduce complications and improve prognosis.


Assuntos
Cisto Broncogênico , Ressecção Endoscópica de Mucosa , Neoplasias Esofágicas , Masculino , Humanos , Pessoa de Meia-Idade , Adulto , Ressecção Endoscópica de Mucosa/métodos , Cisto Broncogênico/diagnóstico por imagem , Cisto Broncogênico/cirurgia , Neoplasias Esofágicas/cirurgia , Endossonografia
19.
Genes (Basel) ; 15(2)2024 01 23.
Artigo em Inglês | MEDLINE | ID: mdl-38397138

RESUMO

(1) Background: Brassinosteroids (BRs) are important hormones involved in almost all stages of plant growth and development, and sterol dehydrogenase is a key enzyme involved in BRs biosynthesis. However, the sterol dehydrogenase gene family of Populus yunnanensis Dode (P. yunnanensis) has not been studied. (2) Methods: The PyDET2 (DEETIOLATED2) gene family was identified and analyzed. Three genes were screened based on RNA-seq of the stem tips, and the PyDET2e was further investigated via qRT-PCR (quantitative real-time polymerase chain reaction) and subcellular localization. (3) Results: The 14 DET2 family genes in P. yunnanensis were categorized into four groups, and 10 conserved protein motifs were identified. The gene structure, chromosome distribution, collinearity, and codon preference of all PyDET2 genes in the P. yunnanensis genome were analyzed. The codon preference of this family is towards the A/U ending, which is strongly influenced by natural selection. The PyDET2e gene was expressed at a higher level in September than in July, and it was significantly expressed in stems, stem tips, and leaves. The PyDET2e protein was localized in chloroplasts. (4) Conclusions: The PyDET2e plays an important role in the rapid growth period of P. yunnanensis. This systematic analysis provides a basis for the genome-wide identification of genes related to the brassinolide biosynthesis process in P. yunnanensis, and lays a foundation for the study of the rapid growth mechanism of P. yunnanensis.


Assuntos
Populus , Populus/genética , Perfilação da Expressão Gênica , Genes de Plantas , Família Multigênica , Oxirredutases/genética
20.
J Radiat Res ; 65(1): 10-27, 2024 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-37981296

RESUMO

Ionizing radiation (IR) induces ferroptosis in head and neck squamous cell carcinoma (HNSCC). But, it remains unclear whether ferroptosis affects the prognosis of HNSCC patients after receiving radiotherapy. This study aims to develop a ferroptosis signature to predict the radiosensitivity and prognosis of HNSCC. Ferroptosis-related genes, clinical data and RNA expression profiles were obtained from the FerrDb database, The Cancer Genome Atlas and GEO database. Prognostic genes were identified by random survival forest, univariate Cox regression, Kaplan-Meier and ROC analyses. Principal component analysis, multivariate Cox regression, nomogram and DCA analyses were conducted to estimate its predictive ability. Functional enrichment and immune-related analyses were performed to explore potential biological mechanisms and tumor immune microenvironment. The effect of the hub gene on ferroptosis and radiosensitivity was verified using flow cytometry, quantitative real-time PCR and clonogenic survival assay. We constructed a ferroptosis-related signature, including IL6, NCF2, metadherin (MTDH) and CBS. We classified patients into high-risk (HRisk) and low-risk groups according to the risk scores. The risk score was confirmed to be an independent predictor for overall survival (OS). Combining the clinical stage with the risk score, we established a predictive nomogram for OS. Furthermore, pathways related to tumorigenesis and tumor immune suppression were mainly enriched in HRisk. MTDH was verified to have a potent effect on IR-induced ferroptosis and consequently promoted radiosensitivity. We constructed a ferroptosis-related signature to predict radiosensitivity and OS in HNSCC patients. MTDH was identified as a promising therapeutic target in radioresistant HNSCC patients.


Assuntos
Ferroptose , Neoplasias de Cabeça e Pescoço , Humanos , Prognóstico , Carcinoma de Células Escamosas de Cabeça e Pescoço/genética , Carcinoma de Células Escamosas de Cabeça e Pescoço/radioterapia , Ferroptose/genética , Fatores de Transcrição , Tolerância a Radiação/genética , Neoplasias de Cabeça e Pescoço/genética , Neoplasias de Cabeça e Pescoço/radioterapia , Microambiente Tumoral , Proteínas de Membrana/genética , Proteínas de Ligação a RNA
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA