Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 43
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Blood ; 137(6): 812-825, 2021 02 11.
Artigo em Inglês | MEDLINE | ID: mdl-32911532

RESUMO

B-cell lymphoma 6 (BCL6) is a transcription repressor and proto-oncogene that plays a crucial role in the innate and adaptive immune system and lymphoid neoplasms. However, its role in myeloid malignancies remains unclear. Here, we explored the role of BCL6 in acute myeloid leukemia (AML). BCL6 was expressed at variable and often high levels in AML cell lines and primary AML samples. AMLs with higher levels of BCL6 were generally sensitive to treatment with BCL6 inhibitors, with the exception of those with monocytic differentiation. Gene expression profiling of AML cells treated with a BCL6 inhibitor revealed induction of BCL6-repressed target genes and transcriptional programs linked to DNA damage checkpoints and downregulation of stem cell genes. Ex vivo treatment of primary AML cells with BCL6 inhibitors induced apoptosis and decreased colony-forming capacity, which correlated with the levels of BCL6 expression. Importantly, inhibition or knockdown of BCL6 in primary AML cells resulted in a significant reduction of leukemia-initiating capacity in mice, suggesting ablation of leukemia repopulating cell functionality. In contrast, BCL6 knockout or inhibition did not suppress the function of normal hematopoietic stem cells. Treatment with cytarabine further induced BCL6 expression, and the levels of BCL6 induction were correlated with resistance to cytarabine. Treatment of AML patient-derived xenografts with BCL6 inhibitor plus cytarabine suggested enhanced antileukemia activity with this combination. Hence, pharmacologic inhibition of BCL6 might provide a novel therapeutic strategy for ablation of leukemia-repopulating cells and increased responsiveness to chemotherapy.


Assuntos
Leucemia Mieloide Aguda/patologia , Proteínas de Neoplasias/fisiologia , Proteínas Proto-Oncogênicas c-bcl-6/fisiologia , Animais , Antineoplásicos/farmacologia , Apoptose , Autorrenovação Celular , Citarabina/uso terapêutico , Perfilação da Expressão Gênica , Regulação Leucêmica da Expressão Gênica , Técnicas de Silenciamento de Genes , Células-Tronco Hematopoéticas/citologia , Humanos , Indóis/farmacologia , Indóis/uso terapêutico , Leucemia Mieloide Aguda/genética , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCID , Células-Tronco Neoplásicas/citologia , Proto-Oncogene Mas , Proteínas Proto-Oncogênicas c-bcl-6/antagonistas & inibidores , Interferência de RNA , RNA Mensageiro/biossíntese , RNA Mensageiro/genética , RNA Neoplásico/biossíntese , RNA Neoplásico/genética , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/farmacologia , RNA-Seq , Quimera por Radiação , Tiazolidinedionas/farmacologia , Tiazolidinedionas/uso terapêutico , Ensaio Tumoral de Célula-Tronco , Ensaios Antitumorais Modelo de Xenoenxerto
2.
Nature ; 538(7625): 397-401, 2016 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-27706135

RESUMO

Transient, multi-protein complexes are important facilitators of cellular functions. This includes the chaperome, an abundant protein family comprising chaperones, co-chaperones, adaptors, and folding enzymes-dynamic complexes of which regulate cellular homeostasis together with the protein degradation machinery. Numerous studies have addressed the role of chaperome members in isolation, yet little is known about their relationships regarding how they interact and function together in malignancy. As function is probably highly dependent on endogenous conditions found in native tumours, chaperomes have resisted investigation, mainly due to the limitations of methods needed to disrupt or engineer the cellular environment to facilitate analysis. Such limitations have led to a bottleneck in our understanding of chaperome-related disease biology and in the development of chaperome-targeted cancer treatment. Here we examined the chaperome complexes in a large set of tumour specimens. The methods used maintained the endogenous native state of tumours and we exploited this to investigate the molecular characteristics and composition of the chaperome in cancer, the molecular factors that drive chaperome networks to crosstalk in tumours, the distinguishing factors of the chaperome in tumours sensitive to pharmacologic inhibition, and the characteristics of tumours that may benefit from chaperome therapy. We find that under conditions of stress, such as malignant transformation fuelled by MYC, the chaperome becomes biochemically 'rewired' to form a network of stable, survival-facilitating, high-molecular-weight complexes. The chaperones heat shock protein 90 (HSP90) and heat shock cognate protein 70 (HSC70) are nucleating sites for these physically and functionally integrated complexes. The results indicate that these tightly integrated chaperome units, here termed the epichaperome, can function as a network to enhance cellular survival, irrespective of tissue of origin or genetic background. The epichaperome, present in over half of all cancers tested, has implications for diagnostics and also provides potential vulnerability as a target for drug intervention.


Assuntos
Chaperonas Moleculares/metabolismo , Complexos Multiproteicos/metabolismo , Neoplasias/metabolismo , Neoplasias/patologia , Animais , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/genética , Descoberta de Drogas , Feminino , Genes myc/genética , Proteínas de Choque Térmico HSP70/metabolismo , Proteínas de Choque Térmico HSP90/metabolismo , Humanos , Camundongos , Chaperonas Moleculares/antagonistas & inibidores , Complexos Multiproteicos/antagonistas & inibidores , Complexos Multiproteicos/química , Neoplasias/tratamento farmacológico , Neoplasias/genética , Especificidade de Órgãos
3.
Br J Haematol ; 166(6): 849-61, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-24957109

RESUMO

Ibrutinib inhibits Bruton tyrosine kinase (BTK), a key component of early B-cell receptor (BCR) signalling pathways. A multicentre phase 2 trial of ibrutinib in patients with relapsed/refractory mantle cell lymphoma (MCL) demonstrated a remarkable response rate. However, approximately one-third of patients have primary resistance to the drug while other patients appear to lose response and develop secondary resistance. Understanding the molecular mechanisms underlying ibrutinib sensitivity is of paramount importance. In this study, we investigated cell lines and primary MCL cells that display differential sensitivity to ibrutinib. We found that the primary cells display a higher BTK activity than normal B cells and MCL cells show differential sensitivity to BTK inhibition. Genetic knockdown of BTK inhibits the growth, survival and proliferation of ibrutinib-sensitive but not resistant MCL cell lines, suggesting that ibrutinib acts through BTK to produce its anti-tumour activities. Interestingly, inhibition of ERK1/2 and AKT, but not BTK phosphorylation per se, correlates well with cellular response to BTK inhibition in cell lines as well as in primary tumours. Our study suggests that, to prevent primary resistance or to overcome secondary resistance to BTK inhibition, a combinatory strategy that targets multiple components or multiple pathways may represent the most effective approach.


Assuntos
Antineoplásicos/uso terapêutico , Resistencia a Medicamentos Antineoplásicos , Linfoma de Célula do Manto/tratamento farmacológico , Pirazóis/uso terapêutico , Pirimidinas/uso terapêutico , Adenina/análogos & derivados , Tirosina Quinase da Agamaglobulinemia , Ciclo Celular/efeitos dos fármacos , Morte Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Técnicas de Silenciamento de Genes , Humanos , Linfoma de Célula do Manto/metabolismo , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Fosforilação/efeitos dos fármacos , Piperidinas , Proteínas Tirosina Quinases/antagonistas & inibidores , Proteínas Tirosina Quinases/metabolismo , Células Tumorais Cultivadas
4.
Nat Chem Biol ; 7(11): 818-26, 2011 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-21946277

RESUMO

Most cancers are characterized by multiple molecular alterations, but identification of the key proteins involved in these signaling pathways is currently beyond reach. We show that the inhibitor PU-H71 preferentially targets tumor-enriched Hsp90 complexes and affinity captures Hsp90-dependent oncogenic client proteins. We have used PU-H71 affinity capture to design a proteomic approach that, when combined with bioinformatic pathway analysis, identifies dysregulated signaling networks and key oncoproteins in chronic myeloid leukemia. The identified interactome overlaps with the well-characterized altered proteome in this cancer, indicating that this method can provide global insights into the biology of individual tumors, including primary patient specimens. In addition, we show that this approach can be used to identify previously uncharacterized oncoproteins and mechanisms, potentially leading to new targeted therapies. We further show that the abundance of the PU-H71-enriched Hsp90 species, which is not dictated by Hsp90 expression alone, is predictive of the cell's sensitivity to Hsp90 inhibition.


Assuntos
Regulação Neoplásica da Expressão Gênica/fisiologia , Proteínas de Choque Térmico HSP90/metabolismo , Neoplasias/metabolismo , Proteômica/métodos , Animais , Antineoplásicos/farmacologia , Benzodioxóis/farmacologia , Linhagem Celular Tumoral , Biologia Computacional , Descoberta de Drogas , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Proteínas de Choque Térmico HSP90/genética , Humanos , Neoplasias/genética , Purinas/farmacologia , Transdução de Sinais
5.
J Biol Chem ; 286(3): 1748-57, 2011 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-21078675

RESUMO

CDK11(p58), a member of the p34(cdc2)-related kinase family, is associated with cell cycle progression, tumorigenesis, and proapoptotic signaling. It is also required for the maintenance of chromosome cohesion, the maturation of centrosome, the formation of bipolar spindle, and the completion of mitosis. Here we identified that CDK11(p58) interacted with itself to form homodimers in cells, whereas D224N, the kinase-dead mutant, failed to form homodimers. CDK11(p58) was autophosphorylated, and the main functions of CDK11(p58), such as kinase activity, transactivation of nuclear receptors, and proapoptotic signal transduction, were dependent on its autophosphorylation. Furthermore, the in vitro kinase assay indicated that CDK11(p58) was autophosphorylated at Thr-370. By mutagenesis, we created CDK11(p58) T370A and CDK11(p58) T370D, which mimic the dephosphorylated and phosphorylated forms of CDK11(p58), respectively. The T370A mutant could not form dimers and be phosphorylated by the wild type CDK11(p58) and finally lost the kinase activity. Further functional research revealed that T370A failed to repress the transactivation of androgen receptor and enhance the cell apoptosis. Overall, our data indicated that Thr-370 is responsible for the autophosphorylation, dimerization, and kinase activity of CDK11(p58). Moreover, Thr-370 mutants might affect CDK11(p58)-mediated signaling pathways.


Assuntos
Apoptose/fisiologia , Quinases Ciclina-Dependentes/metabolismo , Multimerização Proteica/fisiologia , Transdução de Sinais/fisiologia , Ativação Transcricional/fisiologia , Triptofano/metabolismo , Substituição de Aminoácidos , Quinases Ciclina-Dependentes/genética , Células HeLa , Humanos , Mutação de Sentido Incorreto , Fosforilação/fisiologia , Triptofano/genética
6.
Nat Commun ; 13(1): 2227, 2022 04 28.
Artigo em Inglês | MEDLINE | ID: mdl-35484102

RESUMO

Acute myeloid leukemia (AML) is a disease with high incidence of relapse that is originated and maintained from leukemia stem cells (LSCs). Hematopoietic stem cells can be distinguished from LSCs by an array of cell surface antigens such as CD123, thus a candidate to eliminate LSCs using a variety of approaches, including CAR T cells. Here, we evaluate the potential of allogeneic gene-edited CAR T cells targeting CD123 to eliminate LSCs (UCART123). UCART123 cells are TCRαßneg T cells generated from healthy donors using TALEN® gene-editing technology, decreasing the likelihood of graft vs host disease. As safety feature, cells express RQR8 to allow elimination with Rituximab. UCART123 effectively eliminates AML cells in vitro and in vivo with significant benefits in overall survival of AML-patient derived xenograft mice. Furthermore, UCART123 preferentially target AML over normal cells with modest toxicity to normal hematopoietic stem/progenitor cells. Together these results suggest that UCART123 represents an off-the shelf therapeutic approach for AML.


Assuntos
Transplante de Células-Tronco Hematopoéticas , Leucemia Mieloide Aguda , Animais , Humanos , Subunidade alfa de Receptor de Interleucina-3/metabolismo , Leucemia Mieloide Aguda/tratamento farmacológico , Leucemia Mieloide Aguda/terapia , Camundongos , Receptores de Antígenos de Linfócitos T alfa-beta/genética , Receptores de Antígenos de Linfócitos T alfa-beta/metabolismo , Linfócitos T
7.
J Biol Chem ; 285(30): 23137-46, 2010 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-20504772

RESUMO

The receptor for advanced glycation end products (RAGE) is a pattern-recognition receptor that binds to diverse ligands and initiates a downstream proinflammatory signaling cascade. RAGE activation has been linked to diabetic complications, Alzheimer disease, infections, and cancers. RAGE is known to mediate cell signaling and downstream proinflammatory gene transcription activation, although the precise mechanism surrounding receptor-ligand interactions is still being elucidated. Recent fluorescence resonance energy transfer evidence indicates that RAGE may form oligomers on the cell surface and that this could be related to signal transduction. To investigate whether RAGE forms oligomers, protein-protein interaction assays were carried out. Here, we demonstrate the interaction between RAGE molecules via their N-terminal V domain, which is an important region involved in ligand recognition. By protein cross-linking using water-soluble and membrane-impermeable cross-linker bis(sulfosuccinimidyl) suberate and nondenaturing gels, we show that RAGE forms homodimers at the plasma membrane, a process potentiated by S100B and advanced glycation end products. Soluble RAGE, the RAGE inhibitor, is also capable of binding to RAGE, similar to V peptide, as shown by surface plasmon resonance. Incubation of cells with soluble RAGE or RAGE V domain peptide inhibits RAGE dimerization, subsequent phosphorylation of intracellular MAPK proteins, and activation of NF-kappaB pathways. Thus, the data indicate that dimerization of RAGE represents an important component of RAGE-mediated cell signaling.


Assuntos
Multimerização Proteica , Estrutura Quaternária de Proteína , Receptores Imunológicos/química , Receptores Imunológicos/metabolismo , Transdução de Sinais , Linhagem Celular , Membrana Celular/metabolismo , Humanos , Ligantes , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , NF-kappa B/metabolismo , Fragmentos de Peptídeos/farmacologia , Multimerização Proteica/efeitos dos fármacos , Estrutura Terciária de Proteína , Receptor para Produtos Finais de Glicação Avançada , Transdução de Sinais/efeitos dos fármacos , Solubilidade
8.
Curr Diab Rep ; 11(4): 244-52, 2011 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-21590515

RESUMO

Diabetic retinopathy is a major diabetic complication with a highly complex etiology. Although there are many pathways involved, it has become established that chronic exposure of the retina to hyperglycemia gives rise to accumulation of advanced glycation end products (AGEs) that play an important role in retinopathy. In addition, the receptor for AGEs (RAGE) is ubiquitously expressed in various retinal cells and is upregulated in the retinas of diabetic patients, resulting in activation of pro-oxidant and proinflammatory signaling pathways. This AGE-RAGE axis appears to play a central role in the sustained inflammation, neurodegeneration, and retinal microvascular dysfunction occurring during diabetic retinopathy. The nature of AGE formation and RAGE signaling bring forward possibilities for therapeutic intervention. The multiple components of the AGE-RAGE axis, including signal transduction, formation of ligands, and the end-point effectors, may be promising targets for strategies to treat diabetic retinopathy.


Assuntos
Retinopatia Diabética/metabolismo , Produtos Finais de Glicação Avançada/metabolismo , Receptores Imunológicos/metabolismo , Animais , Humanos , Modelos Biológicos , Receptor para Produtos Finais de Glicação Avançada , Receptores Imunológicos/antagonistas & inibidores , Transdução de Sinais/efeitos dos fármacos
9.
Bioorg Med Chem Lett ; 21(18): 5347-52, 2011 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-21802945

RESUMO

Fluorescent ligands for the heat shock protein 90 (Hsp90) were synthesized containing either fluorescein isothiocyanate (FITC), 4-nitrobenzo[1,2,5]oxadiazole (NBD) or the red shifted dye sulforhodamine 101 (Texas Red) conjugated to PU-H71. Two of the compounds, PU-H71-FITC2 (9) and PU-H71-NBD1 (8), were shown to be suitable for fluorescence-activated flow cytometry and fluorescence microscopy. Thus these molecules serve as useful probes for studying Hsp90 in heterogeneous live cell populations.


Assuntos
Corantes Fluorescentes/química , Corantes Fluorescentes/síntese química , Proteínas de Choque Térmico HSP90/análise , Purinas/química , Linhagem Celular Tumoral , Técnicas de Química Sintética , Citometria de Fluxo , Humanos , Microscopia de Fluorescência , Estrutura Molecular , Estereoisomerismo
10.
Bioorg Med Chem ; 19(8): 2603-14, 2011 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-21459002

RESUMO

A number of compounds from different chemical classes are known to bind competitively to the ATP-pocket of Hsp90 and inhibit its chaperone function. The natural product geldanamycin was the first reported inhibitor of Hsp90 and since then synthetic inhibitors from purine, isoxazole and indazol-4-one chemical classes have been discovered and are currently or soon to be in clinical trials for the treatment of cancer. In spite of a similar binding mode to Hsp90, distinct biological profiles were demonstrated among these molecules, both in vitro and in vivo. To better understand the molecular basis for these dissimilarities, we report here the synthesis of chemical tools for three Hsp90 inhibitor classes. These agents will be useful for probing tumor-by-tumor the Hsp90 complexes isolated by specific inhibitors. Such information will lead to better understanding of tumor specific molecular markers to aid in their clinical development. It will also help to elucidate the molecular basis for the biological differences observed among Hsp90 inhibitors.


Assuntos
Desenho de Fármacos , Proteínas de Choque Térmico HSP90/efeitos dos fármacos , Antineoplásicos/química , Antineoplásicos/farmacologia , Ligação Competitiva , Proteínas de Choque Térmico HSP90/antagonistas & inibidores , Humanos , Sondas Moleculares/síntese química
11.
J Cell Biochem ; 109(5): 1013-24, 2010 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-20069563

RESUMO

The androgen-signaling pathway plays critical roles in normal prostate development, benign prostatic hyperplasia, established prostate cancer, and in prostate carcinogenesis. In this study, we report that trihydrophobin 1 (TH1) is a potent negative regulator to attenuate the androgen signal-transduction cascade through promoting androgen receptor (AR) degradation. TH1 interacts with AR both in vitro and in vivo, decreases the stability of AR, and promotes AR ubiquitination in a ligand-independent manner. TH1 also associates with AR at the active androgen-responsive prostate-specific antigen (PSA) promoter in the nucleus of LNCaP cells. Decrease of endogenous AR protein by TH1 interferes with androgen-induced luciferase reporter expression and reduces endogenous PSA expression. Taken together, these results indicate that TH1 is a novel regulator to control the duration and magnitude of androgen signal transduction and might be directly involved in androgen-related developmental, physiological, and pathological processes.


Assuntos
Androgênios/metabolismo , Proteínas de Transporte/metabolismo , Processamento de Proteína Pós-Traducional , Receptores Androgênicos/metabolismo , Transdução de Sinais , Animais , Células COS , Proteínas de Transporte/genética , Linhagem Celular Tumoral , Núcleo Celular/metabolismo , Chlorocebus aethiops , Regulação para Baixo , Elementos Facilitadores Genéticos/genética , Perfilação da Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Regiões Promotoras Genéticas/genética , Antígeno Prostático Específico/genética , Ligação Proteica , Estabilidade Proteica , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Fatores de Transcrição , Ativação Transcricional/genética , Ubiquitinação
12.
Mol Vis ; 16: 2524-38, 2010 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-21151599

RESUMO

PURPOSE: Recent evidence suggests that neuroglial dysfunction and degeneration contributes to the etiology and progression of diabetic retinopathy. Advanced lipoxidation end products (ALEs) have been implicated in the pathology of various diseases, including diabetes and several neurodegenerative disorders. The purpose of the present study was to investigate the possible link between the accumulation of ALEs and neuroretinal changes in diabetic retinopathy. METHODS: Retinal sections obtained from diabetic rats and age-matched controls were processed for immunohistochemistry using antibodies against several well defined ALEs. In vitro experiments were also performed using a human Müller (Moorfields/Institute of Ophthalmology-Müller 1 [MIO-M1]) glia cell line. Western blot analysis was used to measure the accumulation of the acrolein-derived ALE adduct Nε-(3-formyl-3,4-dehydropiperidino)lysine (FDP-lysine) in Müller cells preincubated with FDP-lysine-modified human serum albumin (FDP-lysine-HSA). Responses of Müller cells to FDP-lysine accumulation were investigated by analyzing changes in the protein expression of heme oxygenase-1 (HO-1), glial fibrillary acidic protein (GFAP), and the inwardly rectifying potassium channel Kir4.1. In addition, mRNA expression levels of vascular endothelial growth factor (VEGF), interleukin-6 (IL-6), and tumor necrosis factor-α (TNFα) were determined by reverse transcriptase PCR (RT-PCR). Apoptotic cell death was evaluated by fluorescence-activated cell sorting (FACS) analysis after staining with fluorescein isothiocyanate (FITC)-labeled annexin V and propidium iodide. RESULTS: No significant differences in the levels of malondialdehyde-, 4-hydroxy-2-nonenal-, and 4-hydroxyhexenal-derived ALEs were evident between control and diabetic retinas after 4 months of diabetes. By contrast, FDP-lysine immunoreactivity was markedly increased in the Müller glia of diabetic rats. Time-course studies revealed that FDP-lysine initially accumulated within Müller glial end feet after only a few months of diabetes and thereafter spread distally throughout their inner radial processes. Exposure of human Müller glia to FDP-lysine-HSA led to a concentration-dependent accumulation of FDP-lysine-modified proteins across a broad molecular mass range. FDP-lysine accumulation was associated with the induction of HO-1, no change in GFAP, a decrease in protein levels of the potassium channel subunit Kir4.1, and upregulation of transcripts for VEGF, IL-6, and TNF-α. Incubation of Müller glia with FDP-lysine-HSA also caused apoptosis at high concentrations. CONCLUSIONS: Collectively, these data strongly suggest that FDP-lysine accumulation could be a major factor contributing to the Müller glial abnormalities occurring in the early stages of diabetic retinopathy.


Assuntos
Retinopatia Diabética/metabolismo , Retinopatia Diabética/fisiopatologia , Lisina/análogos & derivados , Neuroglia/metabolismo , Neuroglia/patologia , Animais , Especificidade de Anticorpos/imunologia , Morte Celular , Retinopatia Diabética/patologia , Epitopos/imunologia , Citometria de Fluxo , Regulação da Expressão Gênica , Proteína Glial Fibrilar Ácida/metabolismo , Hemoglobinas Glicadas/metabolismo , Imuno-Histoquímica , Inflamação/genética , Inflamação/patologia , Lipídeos , Lisina/metabolismo , Masculino , Modelos Biológicos , Oxirredução , Ratos , Ratos Sprague-Dawley , Retina/metabolismo , Retina/patologia , Fatores de Tempo
13.
Mol Cell Biol ; 27(20): 7125-42, 2007 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-17698582

RESUMO

Androgen receptor (AR) is essential for the maintenance of the male reproductive systems and is critical for the carcinogenesis of human prostate cancers (PCas). D-type cyclins are closely related to the repression of AR function. It has been well documented that cyclin D1 inhibits AR function through multiple mechanisms, but the mechanism of how cyclin D3 exerts its repressive role in the AR signaling pathway remains to be identified. In the present investigation, we demonstrate that cyclin D3 and the 58-kDa isoform of cyclin-dependent kinase 11 (CDK11p58) repressed AR transcriptional activity as measured by reporter assays of transformed cells and prostate-specific antigen expression in PCa cells. AR, cyclin D3, and CDK11p58 formed a ternary complex in cells and were colocalized in the luminal epithelial layer of the prostate. AR activity is controlled by phosphorylation at specific sites. We found that AR was phosphorylated at Ser-308 by cyclin D3/CDK11p58 in vitro and in vivo, leading to the repressed activity of AR transcriptional activation unit 1 (TAU1). Furthermore, androgen-dependent proliferation of PCa cells was inhibited by cyclin D3/CDK11p58 through AR repression. These data suggest that cyclin D3/CDK11p58 signaling is involved in the negative regulation of AR function.


Assuntos
Quinases Ciclina-Dependentes/metabolismo , Ciclinas/metabolismo , Regulação da Expressão Gênica , Isoformas de Proteínas/metabolismo , Receptores Androgênicos/metabolismo , Animais , Linhagem Celular , Proliferação de Células , Ciclina D3 , Quinases Ciclina-Dependentes/genética , Ciclinas/genética , Genes Reporter , Humanos , Masculino , Camundongos , Complexos Multiproteicos/metabolismo , Fosforilação , Antígeno Prostático Específico/genética , Antígeno Prostático Específico/metabolismo , Isoformas de Proteínas/genética , Estrutura Terciária de Proteína , Interferência de RNA , Receptores Androgênicos/genética , Serina/metabolismo , Transdução de Sinais/fisiologia , Testículo/citologia , Testículo/metabolismo , Transcrição Gênica
14.
Int J Mol Med ; 45(5): 1563-1570, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-32323752

RESUMO

The expression of anillin mRNA and protein is regulated in a cell cycle­dependent manner. However, the mechanism underlying this process is unclear. Previous studies analyzing the sequence of the 5'­untranslated region of anillin have unveiled several putative p53 binding sites. Therefore, the present study hypothesized that the anillin gene may be repressed by p53 and that the commonly observed mutation (or loss of function) of p53 may serve a role in this phenotype. Bioinformatic analysis of the anillin promoter region revealed potential p53 responsive elements. Of those identified, 2 were able to bind p53 protein, as determined via a chromatin immunoprecipitation assay. Although it was hypothesized that DNA damage and resultant p53 expression would repress anillin expression, the results revealed that anillin mRNA and protein expression levels were negatively regulated by DNA damage in the wild­type p53 cells, but not in the isogenic p53 null cells. Furthermore, DNA sequences encompassing the p53 binding site downregulated luciferase transgenes in a p53 dependent manner. Taken together, these data indicated that anillin was negatively regulated by p53 and that anillin overexpression observed in cancer may be a p53­mediated phenomenon. The data from the present study provided further evidence for the role of p53 in the biologically crucial process of cytokinesis.


Assuntos
Proteínas Contráteis/genética , Regiões Promotoras Genéticas/genética , Elementos de Resposta/genética , Proteína Supressora de Tumor p53/genética , Sítios de Ligação/genética , Ciclo Celular/genética , Linhagem Celular Tumoral , Imunoprecipitação da Cromatina/métodos , Dano ao DNA/genética , Regulação para Baixo/genética , Células HCT116 , Humanos , Luciferases/genética , Células MCF-7 , Mutação/genética , Ligação Proteica/genética
15.
Biochim Biophys Acta ; 1782(11): 649-57, 2008 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-18930135

RESUMO

BCL2L12, a newly identified member of Bcl-2 family, contains a BH2 domain and a putative BH3 domain. It was found to be highly expressed in normal breast tissues, and was associated with favorable prognosis in breast cancer patients. Here, we reported that the mRNA levels of BCL2L12 and its transcript variant BCL2L12A could be upregulated upon cisplatin treatment in MDA-MB-231 breast cancer cells. Knockdown of BCL2L12 and BCL2L12A dramatically inhibited cisplatin-induced apoptosis. In contrast, ectopic expressions of each of the proteins promoted cisplatin-induced apoptosis. These results indicated that decreased expressions or loss of BCL2L12 and BCL2L12A may contribute to the cisplatin resistance in breast cancer patients. Furthermore, we found that cisplatin-induced downregulation of beta-catenin was partially suppressed in BCL2L12- and BCL2L12A-knocked down MDA-MB-231 cells, which indicated that knockdown of these two proteins may stabilize beta-catenin in cisplatin-induced apoptosis. In short, we proposed that BCL2L12 and BCL2L12A may play an important role in cisplatin-induced apoptosis in MDA-MB-231 breast cancer cells.


Assuntos
Antineoplásicos/uso terapêutico , Neoplasias da Mama , Cisplatino/uso terapêutico , Resistencia a Medicamentos Antineoplásicos , Proteínas Musculares , Proteínas Proto-Oncogênicas c-bcl-2 , Apoptose/fisiologia , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/fisiopatologia , Ciclo Celular/fisiologia , Linhagem Celular Tumoral , Proliferação de Células , Feminino , Humanos , Proteínas Musculares/genética , Proteínas Musculares/metabolismo , Proteínas Proto-Oncogênicas c-bcl-2/genética , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo
16.
Biochem Biophys Res Commun ; 386(3): 493-8, 2009 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-19538938

RESUMO

Vitamin D receptor (VDR) is a member of the nuclear receptor superfamily and regulates transcription of target genes. In this study, we identified CDK11(p58) as a novel protein involved in the regulation of VDR. CDK11(p58), a member of the large family of p34cdc2-related kinases, is associated with cell cycle progression, tumorigenesis, and apoptotic signaling. Our study demonstrated that CDK11(p58) interacted with VDR and repressed VDR-dependent transcriptional activation. Furthermore, overexpression of CDK11(p58) decreased the stability of VDR through promoting its ubiquitin-proteasome-mediated degradation. Taken together, these results suggest that CDK11(p58) is involved in the negative regulation of VDR.


Assuntos
Ciclinas/metabolismo , Complexo de Endopeptidases do Proteassoma/metabolismo , Receptores de Calcitriol/metabolismo , Ativação Transcricional , Ubiquitinação , Animais , Células COS , Chlorocebus aethiops , Ciclina D3 , Ciclinas/genética , Humanos , Receptores de Calcitriol/genética , Transfecção , Ubiquitina/metabolismo
17.
Nat Nanotechnol ; 14(6): 616-622, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30911166

RESUMO

Acute myeloid leukaemia is a fatal disease for most patients. We have found that ferumoxytol (Feraheme), an FDA-approved iron oxide nanoparticle for iron deficiency treatment, demonstrates an anti-leukaemia effect in vitro and in vivo. Using leukaemia cell lines and primary acute myeloid leukaemia patient samples, we show that low expression of the iron exporter ferroportin results in a susceptibility of these cells via an increase in intracellular iron from ferumoxytol. The reactive oxygen species produced by free ferrous iron lead to increased oxidative stress and cell death. Ferumoxytol treatment results in a significant reduction of disease burden in a murine leukaemia model and patient-derived xenotransplants bearing leukaemia cells with low ferroportin expression. Our findings show how a clinical nanoparticle previously considered largely biologically inert could be rapidly incorporated into clinical trials for patients with leukaemia with low ferroportin levels.


Assuntos
Proteínas de Transporte de Cátions/metabolismo , Óxido Ferroso-Férrico , Leucemia Mieloide Aguda , Proteínas de Neoplasias/metabolismo , Neoplasias Experimentais , Animais , Linhagem Celular Tumoral , Aprovação de Drogas , Óxido Ferroso-Férrico/farmacocinética , Óxido Ferroso-Férrico/farmacologia , Leucemia Mieloide Aguda/tratamento farmacológico , Leucemia Mieloide Aguda/metabolismo , Camundongos , Neoplasias Experimentais/tratamento farmacológico , Neoplasias Experimentais/metabolismo , Neoplasias Experimentais/patologia , Espécies Reativas de Oxigênio/metabolismo , Estados Unidos , United States Food and Drug Administration , Ensaios Antitumorais Modelo de Xenoenxerto
18.
Blood Adv ; 3(21): 3261-3265, 2019 11 12.
Artigo em Inglês | MEDLINE | ID: mdl-31698457

RESUMO

Most elderly patients affected with acute myeloid leukemia (AML) will relapse and die of their disease even after achieving complete remission, thus emphasizing the urgent need for new therapeutic approaches with minimum toxicity to normal hematopoietic cells. Cranberry (Vaccinium spp.) extracts have exhibited anticancer and chemopreventive properties that have been mostly attributed to A-type proanthocyanidin (A-PAC) compounds. A-PACs, isolated from a commercially available cranberry extract, were evaluated for their effects on leukemia cell lines, primary AML samples, and normal CD34+ cord blood specimens. Our results indicated potent and specific antileukemia activity in vitro. In addition, the antileukemia activity of A-PACs extended to malignant progenitor and stem cell populations, sparing their normal counterparts. The antileukemia effects of A-PACs were also observed in vivo using patient derived xenografts. Surprisingly, we found that the mechanism of cell death was driven by activation of NF-κB. Overall, our data suggest that A-PACs could be used to improve treatments for AML by targeting leukemia stem cells through a potentially novel pathway.


Assuntos
Antineoplásicos Fitogênicos/farmacologia , Extratos Vegetais/farmacologia , Proantocianidinas/farmacologia , Vaccinium macrocarpon/química , Animais , Antineoplásicos Fitogênicos/química , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Modelos Animais de Doenças , Relação Dose-Resposta a Droga , Humanos , Leucemia Mieloide Aguda/tratamento farmacológico , Leucemia Mieloide Aguda/metabolismo , Camundongos , Extratos Vegetais/química , Proantocianidinas/química , Ensaios Antitumorais Modelo de Xenoenxerto
19.
EBioMedicine ; 8: 117-131, 2016 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-27428424

RESUMO

Transcription factors have traditionally been viewed with skepticism as viable drug targets, but they offer the potential for completely novel mechanisms of action that could more effectively address the stem cell like properties, such as self-renewal and chemo-resistance, that lead to the failure of traditional chemotherapy approaches. Core binding factor is a heterodimeric transcription factor comprised of one of 3 RUNX proteins (RUNX1-3) and a CBFß binding partner. CBFß enhances DNA binding of RUNX subunits by relieving auto-inhibition. Both RUNX1 and CBFß are frequently mutated in human leukemia. More recently, RUNX proteins have been shown to be key players in epithelial cancers, suggesting the targeting of this pathway could have broad utility. In order to test this, we developed small molecules which bind to CBFß and inhibit its binding to RUNX. Treatment with these inhibitors reduces binding of RUNX1 to target genes, alters the expression of RUNX1 target genes, and impacts cell survival and differentiation. These inhibitors show efficacy against leukemia cells as well as basal-like (triple-negative) breast cancer cells. These inhibitors provide effective tools to probe the utility of targeting RUNX transcription factor function in other cancers.


Assuntos
Antineoplásicos/farmacologia , Subunidades alfa de Fatores de Ligação ao Core/metabolismo , Subunidade beta de Fator de Ligação ao Core/metabolismo , Neoplasias/metabolismo , Regulação Alostérica/efeitos dos fármacos , Antineoplásicos/química , Diferenciação Celular/efeitos dos fármacos , Diferenciação Celular/genética , Linhagem Celular Tumoral , Subunidades alfa de Fatores de Ligação ao Core/química , Subunidade beta de Fator de Ligação ao Core/química , Subunidade beta de Fator de Ligação ao Core/genética , Descoberta de Drogas , Ensaios de Seleção de Medicamentos Antitumorais , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Técnicas de Silenciamento de Genes , Humanos , Leucemia , Modelos Moleculares , Conformação Molecular , Mutação , Neoplasias/genética , Ressonância Magnética Nuclear Biomolecular , Ligação Proteica/efeitos dos fármacos , Domínios e Motivos de Interação entre Proteínas , Multimerização Proteica , Transdução de Sinais/efeitos dos fármacos , Relação Estrutura-Atividade
20.
FEBS Lett ; 579(5): 1279-84, 2005 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-15710426

RESUMO

It is known that small glutamine-rich TPR-containing protein (SGT) is the member of TPR motif family. However, the biological functions of SGT remain unclear. In this paper, we report that SGT plays a role in apoptotic signaling. Ectopic expression of SGT enhances DNA fragment and nucleus breakage after the induction of apoptosis. Increasing mRNA level of SGT is also observed in 7721 cells undergoing apoptosis, knockdown the expression of endogenous SGT contributes to the decrease of apoptosis of 7721 cells. Deletion analysis reveals that TPR domain is critical to pro-apoptotic function of SGT. Furthermore, we demonstrated that the PARP cleavage and cytochrome c release are enhanced when SGT is overexpressed in 7721 cells during apoptosis. Collectively, our results indicate that SGT is a new pro-apoptotic factor.


Assuntos
Apoptose , Proteínas/genética , Proteínas/metabolismo , Animais , Proteínas de Transporte , Caspase 3 , Caspases/metabolismo , Ciclo Celular , Linhagem Celular Tumoral , Proliferação de Células , Chlorocebus aethiops , Citocromos c/metabolismo , Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Humanos , Mitocôndrias/metabolismo , Chaperonas Moleculares , Poli(ADP-Ribose) Polimerases/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA