Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Small ; : e2402793, 2024 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-38757420

RESUMO

Developing a new end group for synthesizing asymmetric small molecule acceptors (SMAs) is crucial for achieving high-performance organic photovoltaics (OPVs). Herein, an asymmetric small molecule acceptor, BTP-BO-4FO, featuring a new difluoro-methoxylated end-group is reported. Compared to its symmetric counterpart L8-BO, BTP-BO-4FO exhibits an upshifted energy level, larger dipole moment, and more sequential crystallinity. By adopting two representative and widely available solvent additives (1-chloronaphthalene (CN) and 1,8-diiodooctane (DIO)), the device based on PM6:BTP-BO-4FO (CN) photovoltaic blend demonstrates a power conversion efficiency (PCE) of 18.62% with an excellent open-circuit voltage (VOC) of 0.933 V, which surpasses the optimal result of L8-BO. The PCE of 18.62% realizes the best efficiencies for binary OPVs based on SMAs with asymmetric end groups. A series of investigations reveal that optimized PM6:BTP-BO-4FO film demonstrates similar molecular packing motif and fibrillar phase distribution as PM6:L8-BO (DIO) does, resulting in comparable recombination dynamics, thus, similar fill factor. Besides, it is found PM6:BTP-BO-4FO possesses more efficient charge generation, which yields better VOC-JSC balance. This study provides a new ending group that enables a cutting-edge efficiency in asymmetric SMA-based OPVs, enriching the material library and shed light on further design ideas.

2.
Adv Mater ; : e2405404, 2024 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-38804577

RESUMO

Indoor photovoltaics (IPVs) are garnering increasing attention from both the academic and industrial communities due to the pressing demand of the ecosystem of Internet-of-Things. All-polymer solar cells (all-PSCs), emerging as a sub-type of organic photovoltaics, with the merits of great film-forming properties, remarkable morphological and light stability, hold great promise to simultaneously achieve high efficiency and long-term operation in IPV's application. However, the dearth of polymer acceptors with medium-bandgap has impeded the rapid development of indoor all-PSCs. Herein, a highly efficient medium-bandgap polymer acceptor (PYFO-V) is reported through the synergistic effects of side chain engineering and linkage modulation and applied for indoor all-PSCs operation. As a result, the PM6:PYFO-V-based indoor all-PSC yields the highest efficiency of 27.1% under LED light condition, marking the highest value for reported binary indoor all-PSCs to date. More importantly, the blade-coated devices using non-halogenated solvent (o-xylene) maintain an efficiency of over 23%, demonstrating the potential for industry-scale fabrication. This work not only highlights the importance of fine-tuning intramolecular charge transfer effect and intrachain coplanarity in developing high-performance medium-bandgap polymer acceptors but also provides a highly efficient strategy for indoor all-PSC application.

3.
Nat Commun ; 14(1): 2323, 2023 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-37087472

RESUMO

Fullerene acceptors typically possess excellent electron-transporting properties and can work as guest components in ternary organic solar cells to enhance the charge extraction and efficiencies. However, conventional fullerene small molecules typically suffer from undesirable segregation and dimerization, thus limiting their applications in organic solar cells. Herein we report the use of a poly(fullerene-alt-xylene) acceptor (PFBO-C12) as guest component enables a significant efficiency increase from 16.9% for binary cells to 18.0% for ternary all-polymer solar cells. Ultrafast optic and optoelectronic studies unveil that PFBO-C12 can facilitate hole transfer and suppress charge recombination. Morphological investigations show that the ternary blends maintain a favorable morphology with high crystallinity and smaller domain size. Meanwhile, the introduction of PFBO-C12 reduces voltage loss and enables all-polymer solar cells with excellent light stability and mechanical durability in flexible devices. This work demonstrates that introducing polyfullerenes as guest components is an effective approach to achieving highly efficient ternary all-polymer solar cells with good stability and mechanical robustness.

4.
Nanomicro Lett ; 16(1): 30, 2023 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-37995001

RESUMO

With plenty of popular and effective ternary organic solar cells (OSCs) construction strategies proposed and applied, its power conversion efficiencies (PCEs) have come to a new level of over 19% in single-junction devices. However, previous studies are heavily based in chloroform (CF) leaving behind substantial knowledge deficiencies in understanding the influence of solvent choice when introducing a third component. Herein, we present a case where a newly designed asymmetric small molecular acceptor using fluoro-methoxylated end-group modification strategy, named BTP-BO-3FO with enlarged bandgap, brings different morphological evolution and performance improvement effect on host system PM6:BTP-eC9, processed by CF and ortho-xylene (o-XY). With detailed analyses supported by a series of experiments, the best PCE of 19.24% for green solvent-processed OSCs is found to be a fruit of finely tuned crystalline ordering and general aggregation motif, which furthermore nourishes a favorable charge generation and recombination behavior. Likewise, over 19% PCE can be achieved by replacing spin-coating with blade coating for active layer deposition. This work focuses on understanding the commonly met yet frequently ignored issues when building ternary blends to demonstrate cutting-edge device performance, hence, will be instructive to other ternary OSC works in the future.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA