Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
PLoS Genet ; 19(4): e1010704, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-37011098

RESUMO

Saliva plays important roles in insect feeding, but its roles in insect reproduction were rarely reported. Here we reported that the knockdown of a salivary gland-specific gene NlG14 disrupted the reproduction through inhibiting the ovulation of the brown planthopper (BPH), Nilaparvata lugens (Stål), one of the most devastating rice pests in Asia. NlG14 knockdown caused the displacement of the lateral oviduct secreted components (LOSC), leading to the ovulation disorder and the accumulation of mature eggs in the ovary. The RNAi-treated females laid much less eggs than their control counterparts, though they had the similar oviposition behavior on rice stems as controls. NlG14 protein was not secreted into the hemolymph, indicating an indirect effect of NlG14 knockdown on BPH reproduction. NlG14 knockdown caused the malformation of A-follicle of the principal gland and affected the underlying endocrine mechanism of salivary glands. NlG14 reduction might promote the secretion of insulin-like peptides NlILP1 and NlILP3 from the brain, which up-regulated the expression of Nllaminin gene and then caused the abnormal contraction of lateral oviduct muscle. Another explanation was NlG14 reduction disrupted the ecdysone biosynthesis and action through the insulin-PI3K-Akt signaling in ovary. Altogether, this study indicated that the salivary gland specific protein NlG14 indirectly mediated BPH ovulation process, which established a connexon in function between insect salivary gland and ovary.


Assuntos
Hemípteros , Oryza , Animais , Feminino , Hemípteros/genética , Hemípteros/metabolismo , Insulina/metabolismo , Oviductos , Ovulação/genética , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas e Peptídeos Salivares/metabolismo
2.
J Exp Bot ; 74(21): 6874-6888, 2023 11 21.
Artigo em Inglês | MEDLINE | ID: mdl-37103882

RESUMO

The brown planthopper (BPH) Nilaparvata lugens (Stål) is a main pest on rice. It secretes saliva to regulate plant defense responses, when penetrating rice plant and sucking phloem sap through its stylet. However, the molecular mechanisms of BPH salivary proteins regulating plant defense responses remain poorly understood. A N. lugens DNAJ protein (NlDNAJB9) gene was highly expressed in salivary glands, and the knock down of NlDNAJB9 significantly enhanced honeydew excretion and fecundity of the BPH. NlDNAJB9 could induce plant cell death, and the overexpression of NlDNAJB9 gene in Nicotiana benthamiana induced calcium signaling, mitogen-activated protein kinase (MAPK) cascades, reactive oxygen species (ROS) accumulation, jasmonic acid (JA) hormone signaling and callose deposition. The results from different NlDNAJB9 deletion mutants indicated that the nuclear localization of NlDNAJB9 was not necessary to induce cell death. The DNAJ domain was the key region to induce cell death, and the overexpression of DNAJ domain in N. benthamiana significantly inhibited insect feeding and pathogenic infection. NlDNAJB9 might interact indirectly with NlHSC70-3 to regulate plant defense responses. NlDNAJB9 and its orthologs were highly conserved in three planthopper species, and could induce ROS burst and cell death in plants. Our study provides new insights into the molecular mechanisms of insect-plant interactions.


Assuntos
Hemípteros , Oryza , Animais , Espécies Reativas de Oxigênio/metabolismo , Saliva/química , Hemípteros/fisiologia , Imunidade Vegetal/genética , Proteínas e Peptídeos Salivares/análise , Proteínas e Peptídeos Salivares/metabolismo , Oryza/genética
3.
J Exp Bot ; 73(22): 7477-7487, 2022 12 08.
Artigo em Inglês | MEDLINE | ID: mdl-36056768

RESUMO

The brown planthopper (BPH), Nilaparvata lugens (Stål) (Hemiptera: Delphacidae), is a serious insect pest on rice. It uses its stylet to collect sap by penetrating the phloem and at the same time it delivers saliva into the host plant, which can trigger a reaction. The molecular mechanisms by which BPH salivary proteins result in plant responses are poorly understood. In this study, we screened transcriptomic data from different BPH tissues and found a protein specific to the salivary gland, NlG14, that could induce cell death in plants. We determined that NlG14 is uniquely found in the insect family Delphacidae. Detailed examination of N. lugens showed that NlG14 was mainly localized in the A-follicle of the principal gland of the salivary gland, and that it was secreted into rice plants during feeding. Knockdown of NlG14 resulted in significant nymph mortality when BPH was fed on either rice plants or on an artificial diet. Further analysis showed that NlG14 triggered accumulation of reactive oxygen species, cell death, callose deposition, and activation of jasmonic acid signaling pathways in plants. Transient expression of NlG14 in Nicotiana benthamiana decreased insect feeding and suppressed plant pathogen infection. Thus, NlG14, an essential salivary protein of N. lugens, acted as a potential herbivore-associated molecular pattern to enhance plant resistance to both insects and plant pathogens by inducing multiple plant defense responses. Our findings provide new insights into the molecular mechanisms of insect-plant interactions and offer a potential target for pest management.


Assuntos
Proteínas e Peptídeos Salivares , Proteínas e Peptídeos Salivares/genética
4.
J Agric Food Chem ; 71(9): 4163-4171, 2023 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-36812404

RESUMO

CYP6ER1 overexpression is a prevalent mechanism for neonicotinoid resistance in Nilaparvata lugens. Except for imidacloprid, the metabolism of other neonicotinoids by CYP6ER1 lacked direct evidence. In this study, a CYP6ER1 knockout strain (CYP6ER1-/-) was constructed using the CRISPR/Cas9 strategy. The CYP6ER1-/- strain showed much higher susceptibility to imidacloprid and thiacloprid with an SI (sensitivity index, LC50 of WT/LC50 of CYP6ER1-/-) of over 100, which was 10-30 for four neonicotinoids (acetamiprid, nitenpyram, clothianidin, and dinotefuran) and less than 5 for flupyradifurone and sulfoxaflor. Recombinant CYP6ER1 showed the highest activity to metabolize imidacloprid and thiacloprid and moderate activity for the other four neonicotinoids. Main metabolite identification and oxidation site prediction revealed that CYP6ER1 activities were insecticide structure-dependent. The most potential oxidation site of imidacloprid and thiacloprid was located in the five-membered heterocycle with hydroxylation activity. For the other four neonicotinoids, the potential site was within the ring opening of a five-membered heterocycle, indicating N-desmethyl activity.


Assuntos
Hemípteros , Inseticidas , Tiazinas , Animais , Neonicotinoides/farmacologia , Inseticidas/farmacologia , Tiazinas/farmacologia , Hemípteros/genética
5.
J Agric Food Chem ; 2023 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-37027537

RESUMO

Flonicamid inhibits the feeding of piercing-sucking pests as a selective systemic insecticide. The brown planthopper (BPH), Nilaparvata lugens (Stål), is one of the most serious pests on rice. During feeding, it uses its stylet to collect sap by penetrating the phloem, and at the same time, it delivers saliva into the rice plant. Insect salivary proteins play important roles in feeding and interacting with plants. Whether flonicamid affects the expression of salivary protein genes and then inhibits the feeding of BPH is not clear. Here, from 20 functionally characterized salivary proteins, we screened five salivary proteins (NlShp, NlAnnix5, Nl16, Nl32, and NlSP7) whose gene expressions were significantly inhibited by flonicamid. We performed experimental analysis on two of them (Nl16 and Nl32). RNA interference of Nl32 significantly reduced the survival rate of BPH. Electrical penetration graph (EPG) experiments showed that both flonicamid treatment and knockdown of Nl16 and Nl32 genes significantly reduced the feeding activity of N. lugens in the phloem and also reduced the honeydew excretion and fecundity. These results suggested that the inhibition of flonicamid on the feeding behavior in N. lugens might be partially attributed to its effect on the expression of salivary protein genes. This study provides a new insight into the mechanism of action of flonicamid on insect pests.

6.
Insect Sci ; 30(3): 693-704, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36093889

RESUMO

The lipid metabolism plays an essential role in the development and reproduction of insects, and lipases are important enzymes in lipid metabolism. In Nilaparvata lugens, an important insect pest on rice, triacylglycerol hydrolytic activities were different among tissues, with high activity in integument, ovary, and fat body, but low activity in intestine. To figure out the tissue-specific triacylglycerol hydrolytic activity, we identified 43 lipases in N. lugens. Of these 43 lipases, 23 belonged to neutral lipases, so this group was selected to perform further experiments on triacylglycerol hydrolysis. The complete motifs of catalytic triads, ß9 loop, and lid motif, are required for the triacylglycerol hydrolytic activity in neutral lipases, which were found in some neutral lipases with high gene expression levels in integument and ovary, but not in intestine. The recombinant proteins of 3 neutral lipases with or without 3 complete motifs were obtained, and the activity determination confirmed the importance of 3 motifs. Silencing XM_022331066.1, which is highly expressed in ovary and with 3 complete motifs, significantly decreased the egg production and hatchability of N. lugens, partially through decline of the lipid metabolism. In summary, at least one-third of important motifs were incomplete in all neutral lipases with high gene expression in intestine, which could partially explain why the lipase activity in intestine was much lower than that in other tissues. The low activity to hydrolyze triacylglycerol in N. lugens intestine might be associated with its food resource and nutrient components, and the ovary-specific neutral lipases were important for N. lugens reproduction.


Assuntos
Hemípteros , Feminino , Animais , Hidrólise , Triglicerídeos/metabolismo , Lipase/genética , Lipase/metabolismo , Insetos/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA