Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
1.
Curr Issues Mol Biol ; 46(6): 5724-5743, 2024 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-38921014

RESUMO

Ficus virens is a deciduous tree that is highly valuable both economically and medicinally. Like other plants with 'red young leaves', the red-leaf period of most F. virens trees lasts only a few days, and the red leaves have little ornamental value. However, in recent years, some lines of F. virens with bright red young leaves and a prolonged red-leaf period have been utilized for urban greening. To explore the mechanism of the different lengths of the duration of F. virens leaves, we analyzed the physiology and changes in gene expression during the development of two varieties of leaves. The detection of anthocyanin in different developmental stages of the F. virens leaves showed that the changes in color of the red leaves of F. virens were primarily caused by the change in anthocyanin content. A transcriptome analysis showed that the expression of genes related to the biosynthesis of anthocyanin changed significantly during the development of leaves. A MYB gene FvPAP1, which was consistent with the change in anthocyanin content, was identified. A real-time quantitative reverse transcription PCR analysis and heterologous expression transgenic studies showed that FvPAP1 promoted the biosynthesis of anthocyanins. The difference in the expression of FvPAP1 in time and intensity in the young leaves may be the reason for the difference in the duration of the red-leaf period in different lines of F. virens. A sequence analysis showed that the cDNA sequence of FvPAP1 was polymorphic, and possible reasons were discussed. These results can provide insight for similar studies on the mechanism of the formation of red coloring in other woody plant leaves and provide molecular targets to breed new materials with more prolonged red-leaf periods in F. virens.

2.
Nano Lett ; 23(16): 7260-7266, 2023 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-37534944

RESUMO

Understanding the oxidation mechanism of metal nanoparticles under ambient pressure is extremely important to make the best use of them in a variety of applications. Through ambient pressure transmission electron microscopy, we in situ investigated the dynamic oxidation processes of Ni nanoparticles at different temperatures under atmospheric pressure, and a temperature-dependent oxidation behavior was revealed. At a relatively low temperature (e.g., 600 °C), the oxidation of Ni nanoparticles underwent a classic Kirkendall process, accompanied by the formation of oxide shells. In contrast, at a higher temperature (e.g., 800 °C), the oxidation began with a single crystal nucleus at the metal surface and then proceeded along the metal/oxide interface without voids formed during the whole process. Through our experiments and density functional theory calculations, a temperature-dependent oxidation mechanism based on Ni nanoparticles was proposed, which was derived from the discrepancy of gas adsorption and diffusion rates under different temperatures.

3.
Angew Chem Int Ed Engl ; 63(20): e202402910, 2024 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-38441480

RESUMO

The challenge of constructing a mechanically robust yet lightweight artificial solid-electrolyte interphase layer on lithium (Li) anodes highlights a trade-off between high battery safety and high energy density. Inspired by the intricate microstructure of the white sea urchin, we first develop a polyvinyl fluoride-hexafluoropropylene (PVDF-HFP) interfacial layer with a triple periodic minimal surface structure (TPMS) that could offer maximal modulus with minimal weight. This design endows high mechanical strength to an ordered porous structure, effectively reduces local current density, polarization, and internal resistance, and stabilizes the anode interface. At a low N/P ratio of ~3, using LiFePO4 as the cathode, Li anodes protected by TPMS-structured PVDF-HFP achieve an extremely low capacity-fading-rate of approximately 0.002 % per cycle over 200 cycles at 1 C, with an average discharge capacity of 142 mAh g-1. Meanwhile, the TPMS porous structure saves 50 wt % of the interfacial layer mass, thereby enhancing the energy density of the battery. The TPMS structure is conducive to large-scale additive manufacturing, which will provide a reference for the future development of lightweight, high-energy-density secondary batteries.

4.
Molecules ; 28(19)2023 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-37836792

RESUMO

Fabricating heterostructures with abundant interfaces and delicate nanoarchitectures is an attractive approach for optimizing photocatalysts. Herein, we report the facile synthesis of BiOCl nanoflake/FeOCl nanospindle heterostructures through a solution chemistry method at room temperature. Characterizations, including XRD, SEM, TEM, EDS, and XPS, were employed to investigate the synthesized materials. The results demonstrate that the in situ reaction between the Bi precursors and the surface Cl- of FeOCl enabled the bounded nucleation and growth of BiOCl on the surface of FeOCl nanospindles. Stable interfacial structures were established between BiOCl nanoflakes and FeOCl nanospindles using Cl- as the bridge. Regulating the Bi-to-Fe ratios allowed for the optimization of the BiOCl/FeOCl interface, thereby facilitating the separation of photogenerated carriers and accelerating the photocatalytic degradation of RhB. The BiOCl/FeOCl heterostructures with an optimal composition of 15% BiOCl exhibited ~90 times higher visible-light photocatalytic activity than FeOCl. Based on an analysis of the band structures and reactive oxygen species, we propose an S-scheme mechanism to elucidate the significantly enhanced photocatalytic performance observed in the BiOCl/FeOCl heterostructures.

5.
Molecules ; 28(5)2023 Mar 03.
Artigo em Inglês | MEDLINE | ID: mdl-36903580

RESUMO

The rational regulation of catalyst active sites at atomic scale is a key approach to unveil the relationship between structure and catalytic performance. Herein, we reported a strategy for the controllable deposition of Bi on Pd nanocubes (Pd NCs) in the priority order from corners to edges and then to facets (Pd NCs@Bi). The spherical aberration-corrected scanning transmission electron microscopy (ac-STEM) results indicated that Bi2O3 with an amorphous structure covers the specific sites of Pd NCs. When only the corners and edges of the Pd NCs were covered, the supported Pd NCs@Bi catalyst exhibited an optimal trade-off between high conversion and selectivity in the hydrogenation of acetylene to ethylene under ethylene-rich conditions (99.7% C2H2 conversion and 94.3% C2H4 selectivity at 170 °C) with remarkable long-term stability. According to the H2-TPR and C2H4-TPD measurements, the moderate hydrogen dissociation and the weak ethylene adsorption are responsible for this excellent catalytic performance. Following these results, the selectively Bi-deposited Pd nanoparticle catalysts showed incredible acetylene hydrogenation performance, which provides a feasible perspective to design and develop highly selective hydrogenation catalysts for industrial applications.

6.
Molecules ; 27(20)2022 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-36296557

RESUMO

The direct hydroxylation of benzene is a green and economical-efficient alternative to the existing cumene process for phenol production. However, the undesired phenol selectivity at high benzene conversion hinders its wide application. Here, we develop a one-pot synthesis of protonated g-C3N4 supporting vanadia catalysts (V-pg-C3N4) for the efficient and selective hydroxylation of benzene. Characterizations suggest that protonating g-C3N4 in diluted HCl can boost the generation of amino groups (NH/NH2) without changing the bulk structure. The content of surface amino groups, which determines the dispersion of vanadia, can be easily regulated by the amount of HCl added in the preparation. Increasing the content of surface amino groups benefits the dispersion of vanadia, which eventually leads to improved H2O2 activation and benzene hydroxylation. The optimal catalyst, V-pg-C3N4-0.46, achieves 60% benzene conversion and 99.7% phenol selectivity at 60 oC with H2O2 as the oxidant.


Assuntos
Benzeno , Fenol , Hidroxilação , Fenol/química , Benzeno/química , Peróxido de Hidrogênio , Fenóis/química , Oxidantes
7.
Inorg Chem ; 60(21): 16658-16665, 2021 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-34672543

RESUMO

Core-shell structured nanomaterials with delicate architectures have attracted considerable attention for realizing multifunctional responses and harnessing multiple interfaces for enhanced functionalities. Here, we report a controllable synthesis of core-shell structured Mn3O4@SiO2NB nanomaterials consisting of Mn3O4 nanorods covered with a shell of SiO2 nanobubbles. A series of Mn3O4@SiO2NB catalysts with tunable secondary structures can be synthesized by simply tuning the feeding ratio and the modification conditions. The as-synthesized Mn3O4@SiO2NB catalysts exhibit excellent catalytic performance in the degradation of methylene blue (MB) because the Fenton-type reaction between Mn3O4 and H2O2 is confined in an MB-rich environment created by the SiO2 nanobubble shell. The confined Fenton-type catalysis maximizes the contact of MB molecules with the reactive oxygen species and significantly promotes the degradation efficiency of MB. Under optimal conditions, Mn3O4@SiO2NB-0.4 can reach a degradation efficiency of 92% at room temperature and neutral pH within 12 min, which outperforms most reported Mn-based catalysts.

8.
Angew Chem Int Ed Engl ; 60(26): 14571-14577, 2021 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-33826203

RESUMO

The development of materials integrated with ultrasmall multi-metal nanoparticles (UMMNs) and mesoporous zeolite is a considerable challenge in chemistry and materials science. We designed a trifunctional surfactant, in which the pyridyl benzimidazole in the hydrophobic tail generates the mesopores through π-π stacking; the diquaternary ammonium in the hydrophilic headgroup direct the formation of MFI zeolite sheets and the nitrogen atoms in the heterocyclic rings coordinate with various metal ions to form UMMNs confined in the zeolite matrix after calcination and reduction. A library of 56 UMMNs confined within both micropores and mesopores of MFI zeolites (MMZs) with 4 mono-, 14 bi- and 38 tri-metallic nanoparticles (sizes of 1.3-4.7 nm) of combinations of Rh, Pd, Pt, Au, Fe, Co, Ni, Cu and Zn were made. An improved catalytic performance was exhibited in the sequence of Rh-MMZ

9.
Inorg Chem ; 58(13): 8525-8532, 2019 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-31185539

RESUMO

Heterostructural engineering and three-dimensional architecture construction are effective strategies to optimize the photocatalytic performance of semiconductors. Herein, we integrate these two strategies and controllably synthesize ZnO-BiOI heterostructures with well-defined architectures. Microstructural and surface analysis reveals that the strong electronic interaction between ZnO and Bi3+ ensures a bounded nucleation and growth of BiOI on the surface of ZnO, which leads to the formation of ZnO-BiOI nanorod heterostructures (ZnO-BiOI-NR) with very high dispersion of BiOI on ZnO nanorods. In contrast, when the nucleation and growth of BiOI occurs before reacting with ZnO nanorods, ZnO-BiOI heterostructures (ZnO-BiOI-NF) are composed of BiOI nanoflowers (NFs) and ZnO nanorods. The precise control over the interfaces of ZnO-BiOI heterostructures provides ideal models to investigate the influence of the interfaces on the catalytic performance of heterostructures. It is important to highlight that the photocatalytic activity of ZnO-BiOI-NR is 12 times higher than that of ZnO-BiOI-NF. Mechanism studies suggest that the abundant ZnO-BiOI interfaces in ZnO-BiOI-NR benefit the generation and separation of hole-electron pairs, which consequently improve the catalytic performance.

10.
Nutr Cancer ; 70(8): 1254-1263, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30686045

RESUMO

OBJECTIVE: In this study, we performed a systematic review and meta-analysis to evaluate the impact of preoperative underweight status on postoperative complications and survival outcome of gastric cancer (GC) patients. METHODS: The related studies were identified by searching PubMed and Embase databases. According to the body mass index (BMI), all patients were classified into underweight group (<18.5 kg/m2) and normal weight group (≥18.5 kg/m2, <25 kg/m2). The relevant data were extracted and pooled effect size were assessed using a fixed effect model or random effect model. RESULTS: A total of 12 studies were included in this meta-analysis. The results indicated that underweight patients had a higher risk of postoperative complications than normal weight patients (RR: 1.28, 95% CI: 1.01-1.61, P < 0.05; I2 = 57.3%), especially for pulmonary infection (RR: 1.58, 95% CI: 1.03-2.43, P < 0.05; I2 = 47.7%). However, there was no significant difference between underweight and normal weight patients for major surgery-related complications such as anastomotic leakage, wound infection, and intra-abdominal infection. In addition, the short-term (RR: 2.12, 95% CI: 1.47-3.06, P < 0.001; I2 = 0%) and long-term survival (HR: 1.53, 95% CI: 1.14-2.07, P < 0.01; I2 = 64.0%) of underweight patients was significantly poorer than that of normal weight patients. CONCLUSION: Preoperative underweight status was significantly associated with unfavorable postoperative outcome of GC patients. The status may represent excessive nutritional consumption and malnutrition resulting from aggressive tumor.


Assuntos
Complicações Pós-Operatórias/etiologia , Neoplasias Gástricas/mortalidade , Neoplasias Gástricas/cirurgia , Magreza , Humanos , Complicações Pós-Operatórias/mortalidade , Período Pré-Operatório
11.
J Am Chem Soc ; 139(39): 13740-13748, 2017 10 04.
Artigo em Inglês | MEDLINE | ID: mdl-28885842

RESUMO

Metal nanocatalysts hold great promise for a wide range of heterogeneous catalytic reactions, while the optimization strategy of catalytic activity is largely restricted by particle size or shape control. Here, we demonstrate that a reversible microstructural control through the crossover between multiply twinned nanoparticle (MTP) and single crystal (SC) can be readily achieved by solvent post-treatment on gold nanoparticles (AuNPs). Polar solvents (e.g., water, methanol) direct the transformation from MTP to SC accompanied by the disappearance of twinning and stacking faults. A reverse transformation from SC to MTP is achieved in nonpolar solvent (e.g., toluene) mixed with thiol ligands. The transformation between two different microstructures is directly observed by in situ TEM and leads to a drastic modulation of catalytic activity toward the gas-phase selective oxidation of alcohols. On the basis of the combined experimental and theoretical investigations of alcohol chemisorption on these nanocatalysts, we propose that the exposure of {211}-like microfacets associated with twin boundaries and stack faults accounts for the strong chemisorption of alcohol molecules on MTP AuNPs and thus the exceptionally high catalytic activity.

12.
J Phys Chem Lett ; 15(11): 3103-3108, 2024 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-38470075

RESUMO

Polymer-lined autoclaves are commonly believed to be highly durable and inert in hydrothermal reactions. Herein, we use the hydrothermal synthesis of AlPO-18 zeolite as a case study to demonstrate that the choice of autoclave materials (polytetrafluoroethylene or para-polyphenylene) does significantly affect the product of zeolite synthesis. A small amount of glass fiber in the PPL-lined autoclave unexpectedly functions as a source of silicon and yields SAPO-34 instead of AlPO-18 as the product. The outcomes of 19 successive experiments conducted with a single PPL-lined autoclave exhibit significant variations, further highlighting that the impurities arising from the autoclaves should be considered during the hydrothermal synthesis procedure. In contrast to SAPO-34 synthesized by the conventional method, which displays only Si(4Al) at a low Si/Al ratio, SAPO-34 synthesized in the PPL-lined autoclave exhibits multiple silicon coordination environments. This outcome provides new physical insights into the silicon incorporation mechanism and proposes a viable strategy for regulating the silicon coordination environment at low Si/Al ratios.

13.
ACS Nano ; 18(27): 17950-17957, 2024 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-38916519

RESUMO

The pursuit of high energy density in lithium batteries has driven the development of efficient electrodes with low levels of inactive components. Herein, a facile approach involving the use of π-π stacked nigrosine@carbon nanotube nanocomposites as an all-in-one additive for a LiFePO4 cathode has been developed. This design significantly reduces the proportion of inactive substances within the cathode, resulting in a battery that exhibits a high specific capacity of 143 mAh g-1 at a 1 C rate and shows commendable cyclic performance. Furthermore, the elimination of rigid current collectors endows the electrode with flexibility, offering avenues for future wearable energy storage devices.

14.
Nano Lett ; 12(11): 5733-9, 2012 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-23051615

RESUMO

We describe an inkjet printing assisted cooperative-assembly method for high-throughput generation of catalyst libraries (multicomponent mesoporous metal oxides) at a rate of 1,000,000-formulations/hour with up to eight-component compositions. The compositions and mesostructures of the libraries can be well-controlled and continuously varied. Fast identification of an inexpensive and efficient quaternary catalyst for photocatalytic hydrogen evolution is achieved via a multidimensional group testing strategy to reduce the number of performance validation experiments (25,000-fold reduction over an exhaustive one-by-one search).


Assuntos
Coloides/química , Óxidos/química , Catálise , Hidrogênio/química , Hidrólise , Nanopartículas Metálicas/química , Microscopia Eletrônica de Transmissão/métodos , Tamanho da Partícula , Fotoquímica/métodos , Espectroscopia Fotoeletrônica/métodos , Impressão , Solventes/química , Fatores de Tempo
15.
Chem Commun (Camb) ; 59(15): 2157-2160, 2023 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-36727587

RESUMO

Ink jet printing is for the first time introduced into the synthesis of aluminophosphate (AlPO) and silicoaluminophosphate (SAPO) zeolite. As a high-throughput technique, 256 zeolite precursors with multiple formulations could be obtained within 2 h, while the product phase was regulated relative to the variant compositions.

16.
J Am Chem Soc ; 134(44): 18286-94, 2012 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-23061378

RESUMO

We show here the first radical route for the direct photosynthesis of AuCN oligomers with different sizes and shapes, as evidenced by TEM observations, from an Au nanoparticle/benzaldehyde/CH(3)CN ternary system in air under UV-light irradiation. This photochemical route is green, mild, and universal, which makes itself distinguishable from the common cyanidation process. Several elementary reaction steps, including the strong C-C bond dissociation of CH(3)CN and subsequent •CN radical addition to Au, have been suggested to be critical in the formation of AuCN oligomers based on the identification of •CN radical by in situ EPR and the radical trapping technique, and other reaction products by GC-MS and (1)H NMR, and DFT calculations. The resulting solid-state AuCN oligomers exhibit unique spectroscopic characters that may be a result of the shorter Au-Au distances (namely, aurophilicity) and/or special polymer-like structures as compared with gold cyanide derivatives in the aqueous phase. The nanosized AuCN oligomers supported on mesoporous silica showed relatively good catalytic activity on the homogeneous annulation of salicylaldehyde with phenylacetylene to afford isoflavanones employing PBu(3) as the cocatalyst under moderate conditions, which also serves as evidence for the successful production of AuCN oligomers.

17.
Nanoscale ; 13(6): 3709-3722, 2021 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-33544114

RESUMO

Rational synthesis of bi- or multi-metallic nanomaterials with both dendritic and porous features is appealing yet challenging. Herein, with the cubic Cu2O nanoparticles composed of ultrafine Cu2O nanocrystals as a self-template, a series of Pd-Cu nanocrystals with different morphologies (e.g., aggregates, porous nanodendrites, meshy nanochains and porous nanoboxes) are synthesized through simply regulating the molar ratio of the Pd precursor to the cubic Cu2O, indicating that the galvanic replacement and Kirkendall effect across the alloying process are well controlled. Among the as-developed various Pd-Cu nanocrystals, the porous nanodendrites with both dendritic and hollow features show superior electrocatalytic activity toward formic acid oxidation. Comprehensive characterizations including three-dimensional simulated reconstruction of a single particle and high-resolution transmission electron microscopy reveal that the surface steps, defects, three-dimensional architecture, and the electronic/strain effects between Cu and Pd are responsible for the outstanding catalytic activity and excellent stability of the Pd-Cu porous nanodendrites.

18.
Front Pharmacol ; 12: 819482, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35111069

RESUMO

Background: RYR is a commonly used lipid-lowering dietary supplements in Asian and European countries, showing considerable benefits and low toxicity. This quantitative study aims to present high-quality evidence regarding the efficacy and safety of RYR in treating hyperlipidemia, in order to promote its clinical application. Methods: PubMed, embase, and Cochrane Central Register of Controlled Trials databases were systematically searched, and high-quality randomized controlled trials comparing RYR with non-RYR interventions were included. RevMan5.3 software was used to conduct the meta-analysis. Results: A total of 1,012 individuals participated in this study (481 in the experimental and 531 in the control group). In comparison to statins, RYR was more effective in lowering TG (MD, -19.90; 95% CI, -32.22 to -7.58; p = 0.002), comparable in lowering LDL-C and elevating HDL-C, and less effective in lowering TC (MD, 12.24; 95% CI, 2.19 to 22.29; p = 0.02). Compared with nutraceutical, RYR significantly reduced TC (MD, -17.80; 95% CI, -27.12 to -8.48; p = 0.0002) and LDL-C (MD, -14.40; 95% CI, -22.71 to -6.09; p = 0.0007), and elevated HDL-C (MD, 7.60; 95% CI, 4.33 to 10.87; p < 0.00001). Moreover, RYR effectively synergized nutraceutical to further reduce TC (MD, -31.10; 95% CI, -38.83 to -23.36; p < 0.00001), LDL-C (MD, -27.91; 95% CI, -36.58 to -19.24; p < 0.00001), and TG (MD, -26.32; 95% CI, -34.05 to -18.59; p < 0.00001). Additionally, RYR significantly reduced apoB (MD, -27.98; 95% CI, -35.51 to -20.45; p < 0.00001) and, whether alone or in combination, did not increase the risk of adverse events in patients with hyperlipidemia. Conclusion: RYR at 200-4800 mg daily appears to be a safe and effective treatment for hyperlipidemia, effectively regulating blood lipid levels with an exceptional impact on TG. Looking forward, high-quality clinical trials with longer observation periods are required to evaluate the efficacy and safety of RYR as a long-term medication. Systematic Review Registration: (https://www.crd.york.ac.uk/PROSPERO/), identifier (CRD4202128450).

19.
Nat Commun ; 12(1): 5770, 2021 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-34599160

RESUMO

Metal/oxide interface is of fundamental significance to heterogeneous catalysis because the seemingly "inert" oxide support can modulate the morphology, atomic and electronic structures of the metal catalyst through the interface. The interfacial effects are well studied over a bulk oxide support but remain elusive for nanometer-sized systems like clusters, arising from the challenges associated with chemical synthesis and structural elucidation of such hybrid clusters. We hereby demonstrate the essential catalytic roles of a nanometer metal/oxide interface constructed by a hybrid Pd/Bi2O3 cluster ensemble, which is fabricated by a facile stepwise photochemical method. The Pd/Bi2O3 cluster, of which the hybrid structure is elucidated by combined electron microscopy and microanalysis, features a small Pd-Pd coordination number and more importantly a Pd-Bi spatial correlation ascribed to the heterografting between Pd and Bi terminated Bi2O3 clusters. The intra-cluster electron transfer towards Pd across the as-formed nanometer metal/oxide interface significantly weakens the ethylene adsorption without compromising the hydrogen activation. As a result, a 91% selectivity of ethylene and 90% conversion of acetylene can be achieved in a front-end hydrogenation process with a temperature as low as 44 °C.

20.
Sci Rep ; 10(1): 4719, 2020 03 13.
Artigo em Inglês | MEDLINE | ID: mdl-32170205

RESUMO

It is challenging to develop a low-cost household water treatment (HWT) that simultaneously deliver an effective and robust way for safe and reliable water supply. Here, we report a simple flow-through filter made by zeolite-cotton packing in a tube (ZCT) as low-cost HWT device to remove heavy metal ions from contaminated water. The zeolite-cotton is fabricated by an on-site template-free growth route that tightly binds mesoporous single-crystal chabazite zeolite onto the surface of cotton fibers. As a result, the ZCT set-up with optimized diameter achieves both high adsorption efficiency, proper flow rate, reliable supply and strong stability at the same time. After flowed through the set up packed with 10 g of zeolite-cotton, 65 mL 1000 ppm Cu2+ solution was purified down to its safety limit (<1 ppm). Notably, their efficiency remains unaltered when filtering several ions simultaneously. In a simulated purification process, 8 L of water contaminated by Cu2+, Cd2+ and Pb2+ could be transformed into drinking water and it enables the removal of heavy metals to concentrations of below 5 ppb (µg L-1). We also show that the ZCT can be used for disinfection by introducing Ag-exchanged zeolite-cotton without contaminating the water with Ag ions (<0.05 ppm).

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA