Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 301
Filtrar
Mais filtros

Tipo de documento
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 120(20): e2221934120, 2023 05 16.
Artigo em Inglês | MEDLINE | ID: mdl-37155890

RESUMO

Single-cell copy number variations (CNVs), major dynamic changes in humans, result in differential levels of gene expression and account for adaptive traits or underlying disease. Single-cell sequencing is needed to reveal these CNVs but has been hindered by single-cell whole-genome amplification (scWGA) bias, leading to inaccurate gene copy number counting. In addition, most of the current scWGA methods are labor intensive, time-consuming, and expensive with limited wide application. Here, we report a unique single-cell whole-genome library preparation approach based on digital microfluidics for digital counting of single-cell Copy Number Variation (dd-scCNV Seq). dd-scCNV Seq directly fragments the original single-cell DNA and uses these fragments as templates for amplification. These reduplicative fragments can be filtered computationally to generate the original partitioned unique identified fragments, thereby enabling digital counting of copy number variation. dd-scCNV Seq showed an increase in uniformity in the single-molecule data, leading to more accurate CNV patterns compared to other methods with low-depth sequencing. Benefiting from digital microfluidics, dd-scCNV Seq allows automated liquid handling, precise single-cell isolation, and high-efficiency and low-cost genome library preparation. dd-scCNV Seq will accelerate biological discovery by enabling accurate profiling of copy number variations at single-cell resolution.


Assuntos
Variações do Número de Cópias de DNA , Microfluídica , Humanos , Variações do Número de Cópias de DNA/genética , Análise de Sequência de DNA/métodos , DNA , Dosagem de Genes , Sequenciamento de Nucleotídeos em Larga Escala , Análise de Célula Única/métodos
2.
Development ; 149(5)2022 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-35142352

RESUMO

Mammalian oocyte maturation is a unique asymmetric division, which is mainly because of actin-based spindle migration to the cortex. In the present study, we report that a kinesin motor KIFC1, which is associated with microtubules for the maintenance of spindle poles in mitosis, is also involved in actin dynamics in murine oocyte meiosis, co-localizing with microtubules during mouse oocyte maturation. Depletion of KIFC1 caused the failure of polar body extrusion, and we found that meiotic spindle formation and chromosome alignment were disrupted. This might be because of the effects of KIFC1 on HDAC6 and NAT10-based tubulin acetylation, which further affected microtubule stability. Mass spectroscopy analysis revealed that KIFC1 also associated with several actin nucleation factors and we found that KIFC1 was essential for the distribution of actin filaments, which further affected spindle migration. Depletion of KIFC1 leaded to aberrant expression of formin 2 and the ARP2/3 complex, and endoplasmic reticulum distribution was also disturbed. Exogenous KIFC1 mRNA supplement could rescue these defects. Taken together, as well as its roles in tubulin acetylation, our study reported a previously undescribed role of kinesin KIFC1 on the regulation of actin dynamics for spindle migration in mouse oocytes.


Assuntos
Cinesinas , Tubulina (Proteína) , beta Carioferinas/metabolismo , Acetilação , Actinas/metabolismo , Animais , Cinesinas/genética , Mamíferos/metabolismo , Meiose , Camundongos , Oócitos/metabolismo , Fuso Acromático/metabolismo , Tubulina (Proteína)/metabolismo
3.
Cell Mol Life Sci ; 81(1): 168, 2024 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-38587639

RESUMO

Kinesin family member 3A (KIF3A) is a microtubule-oriented motor protein that belongs to the kinesin-2 family for regulating intracellular transport and microtubule movement. In this study, we characterized the critical roles of KIF3A during mouse oocyte meiosis. We found that KIF3A associated with microtubules during meiosis and depletion of KIF3A resulted in oocyte maturation defects. LC-MS data indicated that KIF3A associated with cell cycle regulation, cytoskeleton, mitochondrial function and intracellular transport-related molecules. Depletion of KIF3A activated the spindle assembly checkpoint, leading to metaphase I arrest of the first meiosis. In addition, KIF3A depletion caused aberrant spindle pole organization based on its association with KIFC1 to regulate expression and polar localization of NuMA and γ-tubulin; and KIF3A knockdown also reduced microtubule stability due to the altered microtubule deacetylation by histone deacetylase 6 (HDAC6). Exogenous Kif3a mRNA supplementation rescued the maturation defects caused by KIF3A depletion. Moreover, KIF3A was also essential for the distribution and function of mitochondria, Golgi apparatus and endoplasmic reticulum in oocytes. Conditional knockout of epithelial splicing regulatory protein 1 (ESRP1) disrupted the expression and localization of KIF3A in oocytes. Overall, our results suggest that KIF3A regulates cell cycle progression, spindle assembly and organelle distribution during mouse oocyte meiosis.


Assuntos
Cinesinas , Oócitos , Animais , Camundongos , Transporte Biológico , Cinesinas/genética , Meiose , Metáfase
4.
Mol Med ; 30(1): 23, 2024 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-38317106

RESUMO

BACKGROUND: Fluvoxamine is one of the selective serotonin reuptake inhibitors (SSRIs) that are regarded as the first-line drugs to manage mental disorders. It has been also recognized with the potential to treat inflammatory diseases and viral infection. However, the effect of fluvoxamine on autoimmune diseases, particularly type 1 diabetes (T1D) and the related cellular and molecular mechanisms, are yet to be addressed. METHOD: Herein in this report, we treated NOD mice with fluvoxamine for 2 weeks starting from 10-week of age to dissect the impact of fluvoxamine on the prevention of type 1 diabetes. We compared the differences of immune cells between 12-week-old control and fluvoxamine-treated mice by flow cytometry analysis. To study the mechanism involved, we extensively examined the characteristics of CD4+ T cells with fluvoxamine stimulation using RNA-seq analysis, real-time PCR, Western blot, and seahorse assay. Furthermore, we investigated the relevance of our data to human autoimmune diabetes. RESULT: Fluvoxamine not only delayed T1D onset, but also decreased T1D incidence. Moreover, fluvoxamine-treated NOD mice showed significantly attenuated insulitis coupled with well-preserved ß cell function, and decreased Th1 and Th17 cells in the peripheral blood, pancreatic lymph nodes (PLNs), and spleen. Mechanistic studies revealed that fluvoxamine downregulated glycolytic process by inhibiting phosphatidylinositol 3-kinase (PI3K)-AKT signaling, by which it restrained effector T (Teff) cell differentiation and production of proinflammatory cytokines. CONCLUSION: Collectively, our study supports that fluvoxamine could be a viable therapeutic drug against autoimmunity in T1D setting.


Assuntos
Doenças Autoimunes , Diabetes Mellitus Tipo 1 , Camundongos , Humanos , Animais , Diabetes Mellitus Tipo 1/tratamento farmacológico , Camundongos Endogâmicos NOD , Fluvoxamina/farmacologia , Fluvoxamina/uso terapêutico , Células Th17 , Fosfatidilinositol 3-Quinases , Células Th1
5.
J Neuroinflammation ; 21(1): 6, 2024 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-38178196

RESUMO

BACKGROUND: Major depressive disorder (MDD) is a common but severe psychiatric illness characterized by depressive mood and diminished interest. Both nucleotide-binding oligomerization domain, leucine-rich repeat and pyrin domain-containing 1 (NLRP1) inflammasome and autophagy have been reported to implicate in the pathological processes of depression. However, the mechanistic interplay between NLRP1 inflammasome, autophagy, and depression is still poorly known. METHODS: Animal model of depression was established by chronic social defeat stress (CSDS). Depressive-like behaviors were determined by social interaction test (SIT), sucrose preference test (SPT), open field test (OFT), forced swim test (FST), and tail-suspension test (TST). The protein expression levels of NLRP1 inflammasome complexes, pro-inflammatory cytokines, phosphorylated-phosphatidylinositol 3-kinase (p-PI3K)/PI3K, phosphorylated-AKT (p-AKT)/AKT, phosphorylated-mechanistic target of rapamycin (p-mTOR)/mTOR, brain-derived neurotrophic factor (BDNF), phosphorylated-tyrosine kinase receptor B (p-TrkB)/TrkB, Bcl-2-associated X protein (Bax)/B-cell lymphoma-2 (Bcl2) and cleaved cysteinyl aspartate-specific proteinase-3 (caspase-3) were examined by western blotting. The mRNA expression levels of pro-inflammatory cytokines were tested by quantitative real-time PCR. The interaction between proteins was detected by immunofluorescence and coimmunoprecipitation. Neuronal injury was assessed by Nissl staining. The autophagosomes were visualized by transmission electron microscopy. Nlrp1a knockdown was performed using an adeno-associated virus (AAV) vector containing Nlrp1a-shRNA-eGFP infusion. RESULTS: CSDS exposure caused a bidirectional change in hippocampal autophagy function, which was activated in the initial period but impaired at the later stage. In addition, CSDS exposure increased the expression levels of hippocampal NLRP1 inflammasome complexes, pro-inflammatory cytokines, p-PI3K, p-AKT and p-mTOR in a time-dependent manner. Interestingly, NLRP1 is immunoprecipitated with mTOR but not PI3K/AKT and CSDS exposure facilitated the immunoprecipitation between them. Hippocampal Nlrp1a knockdown inhibited the activity of PI3K/AKT/mTOR signaling, rescued the impaired autophagy and ameliorated depressive-like behavior induced by CSDS. In addition, rapamycin, an autophagy inducer, abolished NLRP1 inflammasome-driven inflammatory reactions, alleviated depressive-like behavior and exerted a neuroprotective effect. CONCLUSIONS: Autophagy dysfunction contributes to NLRP1 inflammasome-linked depressive-like behavior in mice and the regulation of autophagy could be a valuable therapeutic strategy for the management of depression.


Assuntos
Depressão , Transtorno Depressivo Maior , Animais , Camundongos , Antidepressivos/farmacologia , Autofagia , Citocinas/metabolismo , Depressão/metabolismo , Transtorno Depressivo Maior/tratamento farmacológico , Hipocampo/metabolismo , Inflamassomos/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Sirolimo/farmacologia , Serina-Treonina Quinases TOR/metabolismo
6.
Eur J Nutr ; 63(3): 697-711, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38147149

RESUMO

PURPOSE: Probiotics have been reported to effectively alleviate hyperuricemia and regulate the gut microbiota. The aim of this work was to study the in vivo anti-hyperuricemic properties and the mechanism of a novel strain, Lactiplantibacillus plantarum X7022. METHODS: Purine content and mRNA expression of purine assimilation related enzymes were determined by HPLC and qPCR, respectively. Hyperuricemic mice were induced by potassium oxonate and hypoxanthine. Uric acid (UA), blood urea nitrogen, creatinine and renal inflammation were examined by kits. The expression of renal UA transporters was subjected to western blotting. Kidney tissues were sectioned for histological analysis. The fecal short-chain fatty acids (SCFAs) were determined by HPLC, and gut microbiota was investigated using the 16S rDNA metagenomic sequencing. RESULTS: L. plantarum X7022 possesses a complete purine assimilation pathway and can exhaust xanthine, guanine, and adenine by 82.1%, 33.1%, and 12.6%, respectively. The strain exhibited gastrointestinal viability as 44% at the dose of 109 CFU/mL in mice. After four-week administration of the strain, a significant decrease of 35.5% in the serum UA level in hyperuricemic mice was achieved. The diminished contents of fecal propionate and butyrate were dramatically boosted. The treatment also alleviated renal inflammation and restored renal damage. The above physiological changes may due to the inhibited xanthine oxidase (XO) activity, as well as the expressional regulation of UA transporters (GLUT9, URAT1 and OAT1) to the normal level. Notably, gut microbiota dysbiosis in hyperuricemic mice was improved with the inflammation and hyperuricemia related flora depressed, and SCFAs production related flora promoted. CONCLUSION: The strain is a promising probiotic strain for ameliorating hyperuricemia.


Assuntos
Microbioma Gastrointestinal , Hiperuricemia , Camundongos , Animais , Hiperuricemia/tratamento farmacológico , Hiperuricemia/induzido quimicamente , Hiperuricemia/metabolismo , Rim/metabolismo , Ácido Úrico , Inflamação/metabolismo
7.
Med Vet Entomol ; 38(1): 59-72, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37771128

RESUMO

Pederin, a defensive toxin in Paederus fuscipes, is produced by an uncultured Gram-negative symbiont, which establishes a stable symbiotic relationship with a female host before completion of metamorphosis. However, the transmission process of pederin-producing bacteria (PPB) in P. fuscipes at different life stages remains unknown. Herein, the PPB population dynamics and transcriptome atlas for P. fuscipes development (egg, first-instar larva, second-instar larva, pupa, and newly emerged female and male) were characterised. We found that a microbial layer containing PPB covered the eggshell, which could be sterilised by smearing the eggshell with streptomycin. Maternal secretions over the eggshell are likely the main PPB acquisition route for P. fuscipes offspring. The PPB density in eggs was significantly higher than that in other life stages (p < 0.05), which demonstrated that the beetle mothers gave more PPB than the larvae acquired. Physiological changes (hatching and eclosion) led to a decreased PPB density in P. fuscipes. Pattern recognition receptors related to Gram-negative bacteria recognition were identified from P. fuscipes transcriptomes across various life stages, which might be used to screen genes involved in PPB regulation. These results will help advance future efforts to determine the molecular mechanisms of PPB colonisation of P. fuscipes.


Assuntos
Besouros , Masculino , Feminino , Animais , Besouros/microbiologia , Besouros/fisiologia , Bactérias/genética , Larva , Piranos
8.
J Sep Sci ; 47(1): e2300616, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38095533

RESUMO

To reveal the utilization value of leaf, stem, and root of Artemisia argyi, a rapid online liquid microextraction combined with a high-performance liquid chromatography coupled with 2,2-nitrogen-di (3-ethyl-benzothiazole-6-sulfonic acid) diammonium salt antioxidant assay system was established for analysis of antioxidants in the leaf, stem, and root of A. argyi, and a calibration quantitative method of antioxidant activity with equivalent chlorogenic acid was proposed. Thirty-three positive peaks were identified; among them, 12 compounds were found that possess good antioxidant activity including eleven organic acids (components 2-4, 8, 11-14, 17, 19, and 21) and one flavonoids (component 22). The proposed calibration quantitative method avoided the influence of content of compound and compared the extent of radical scavenging capacity of five antioxidant compounds, which were ranked as follow: 3,5-dicaffeoylquinic acid > 3,4-dicaffeoylquinic acid ≈ 4,5-dicaffeoylquinic acid > 1,4-dicaffeoylquinic acid > chlorogenic acid. In conclusion, this study provided composition and biological potential for the future development of the leaf, stem, and root of A. argyi. It is believed that the online liquid microextraction combined with high-performance liquid chromatography based antioxidant assay system can be widely used for the rapid screening of natural antioxidant components in the different parts of natural products.


Assuntos
Artemisia , Medicamentos de Ervas Chinesas , Cromatografia Líquida de Alta Pressão/métodos , Antioxidantes/análise , Medicamentos de Ervas Chinesas/análise , Artemisia/química , Ácido Clorogênico/análise , Calibragem , Folhas de Planta/química
9.
Ecotoxicol Environ Saf ; 281: 116630, 2024 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-38917590

RESUMO

Benzo[a]pyrene (BaP) is a polycyclic aromatic hydrocarbon compound that is generated during combustion processes, and is present in various substances such as foods, tobacco smoke, and burning emissions. BaP is extensively acknowledged as a highly carcinogenic substance to induce multiple forms of cancer, such as lung cancer, skin cancer, and stomach cancer. Recently it is shown to adversely affect the reproductive system. Nevertheless, the potential toxicity of BaP on oocyte quality remains unclear. In this study, we established a BaP exposure model via mouse oral gavage and found that BaP exposure resulted in a notable decrease in the ovarian weight, number of GV oocytes in ovarian, and oocyte maturation competence. BaP exposure caused ribosomal dysfunction, characterized by a decrease in the expression of RPS3 and HPG in oocytes. BaP exposure also caused abnormal distribution of the endoplasmic reticulum (ER) and induced ER stress, as indicated by increased expression of GRP78. Besides, the Golgi apparatus exhibited an abnormal localization pattern, which was confirmed by the GM130 localization. Disruption of vesicle transport processes was observed by the abnormal expression and localization of Rab10. Additionally, an enhanced lysosome and LC3 fluorescence intensity indicated the occurrence of protein degradation in oocytes. In summary, our results suggested that BaP exposure disrupted the distribution and functioning of organelles, consequently affecting the developmental competence of mouse oocytes.

10.
Luminescence ; 39(1): e4610, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37880919

RESUMO

Construction of fluorescent probes for zinc ion (Zn2+ ) and cadmium ion (Cd2+ ) is significant for the safety of humans. However, the discriminating recognition of Zn2+ and Cd2+ by a single probe remains challenging owing to their similar properties. Herein, a novel deoxycholic acid derivative containing 8-hydroxyquinoline fluorophore has been facilely synthesized through click chemistry to form a clamp-like probe. Using its perfect bonding cavity from 1,2,3-triazole and quinoline, this molecule showed favorable solvent-dependent fluorescent responses and distinguished Zn2+ and Cd2+ in different solvents. In ethanol aqueous solution, it displayed good selectivity and ratiometric fluorescence to Zn2+ with 30 nm spectroscopic red-shifts. In acetonitrile aqueous solution, it exhibited good selectivity and ratiometric fluorescence to Cd2+ with 18 nm spectroscopic red-shifts. Moreover, the unique microstructural features of the probe in assembly were used to reflect its recognition processes. Due to its merits of low detection limit and instant response time, the probe was utilized for sensing Zn2+ and Cd2+ in water, beer and urine with high accuracy. Meanwhile, this probe served as a handy tool and was employed to obtain inexpensive test strips for the prompt and semiqualitative analysis of Zn2+ and Cd2+ with the naked eye.


Assuntos
Corantes Fluorescentes , Zinco , Humanos , Solventes , Zinco/química , Corantes Fluorescentes/química , Cádmio/análise , Química Click , Oxiquinolina , Água/química , Espectrometria de Fluorescência
11.
J Sci Food Agric ; 104(2): 746-758, 2024 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-37670420

RESUMO

BACKGROUND: Aconitum carmichaelii is an industrially cultivated medicinal plant in China and its lateral and mother roots are used in traditional Chinese medicine due to the presence of alkaloids. However, the rootlets and aerial parts are discarded after collection of the roots, and the non-toxic polysaccharides in this plant have attracted less attention than the alkaloids and poisonous features. In this study, five neutral and 14 acidic polysaccharide fractions were isolated systematically from different plant parts of A. carmichaelii, and their structural features and bioactivity were studied and compared. RESULTS: The neutral fraction isolated from the rootlets differed from those isolated from the lateral and mother roots. It consisted of less starch and more possible mannans, galactans, and/or xyloglucans, being similar to those of the aerial parts. Pectic polysaccharides containing homogalacturonan and branched type-I rhamnogalacturonan (RG-I) were present in all plant parts of A. carmichaelii. However, more arabinogalactan (AG)-II side chains in the RG-I backbone were present in the aerial parts of the plants, while more amounts of arabinans were found in the roots. Various immunomodulatory effects were observed, determined by complement fixation activity and anti-inflammatory effects on the intestinal epithelial cells of all polysaccharide fractions. CONCLUSION: This study highlighted the diversity of polysaccharides present in A. carmichaelii, especially in the unutilized plant parts, and showed their potential medicinal value. © 2023 The Authors. Journal of The Science of Food and Agriculture published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.


Assuntos
Aconitum , Alcaloides , Plantas Medicinais , Aconitum/química , Alcaloides/análise , Polissacarídeos/química , China , Raízes de Plantas/química
12.
Brain Behav Immun ; 108: 32-44, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36343753

RESUMO

BACKGROUND: Parkinson's disease (PD) is characterized by the loss of dopaminergic neurons (DA) and the accumulation of Lewy body deposits composed of alpha-Synuclein (α-Syn), which act as antigenic epitopes to drive cytotoxic T-cell responses in PD. Increased T helper 17 (Th17) cells and dysfunctional regulatory T cells (Tregs) have been reported to be associated with the loss of DA in PD. However, the mechanism underlying the Th17/Treg imbalance remains unknown. METHODS: Here, we examined the percentage of Th17 cells, the percentage of Tregs and the α-Syn level and analysed their correlations in the peripheral blood of PD patients and in the substantia nigra pars compacta (SNpc) and spleen of MPTP-treated mice and A53 transgenic mice. We assessed the effect of α-Syn on the stability and function of Tregs and the differentiation of Th17 cells and evaluated the role of retinoid-related orphan nuclear receptor (RORγt) upregulation in α-Syn stimulation in vivo and in vitro. RESULTS: We found that the α-Syn level and severity of motor symptoms were positively correlated with the increase in Th17 cells and decrease in Tregs in PD patients. Moreover, α-Syn stimulation led to the loss of Forkhead box protein P3 (FOXP3) expression in Tregs, accompanied by the acquisition of IL-17A expression. Increased Th17 differentiation was detected upon α-Syn stimulation when naïve CD4+ T cells were cultured under Th17-polarizing conditions. Mechanistically, α-Syn promotes the transcription of RORC, encoding RORγt, in Tregs and Th17 cells, leading to increased Th17 differentiation and loss of Treg function. Intriguingly, the increase in Th17 cells, decrease in Tregs and apoptosis of DA were suppressed by a RORγt inhibitor (GSK805) in MPTP-treated mice. CONCLUSION: Together, our data suggest that α-Syn promotes the transcription of RORC in circulating CD4+ T cells, including Tregs and Th17 cells, to impair the stability of Tregs and promote the differentiation of Th17 cells in PD. Inhibition of RORγt attenuated the apoptosis of DA and alleviated the increase in Th17 cells and decrease in Tregs in PD.


Assuntos
Doença de Parkinson , Camundongos , Animais , Doença de Parkinson/metabolismo , alfa-Sinucleína/metabolismo , Membro 3 do Grupo F da Subfamília 1 de Receptores Nucleares/genética , Membro 3 do Grupo F da Subfamília 1 de Receptores Nucleares/metabolismo , Linfócitos T Reguladores , Diferenciação Celular , Camundongos Transgênicos , Células Th17/metabolismo
13.
Crit Rev Food Sci Nutr ; 63(25): 7692-7707, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-35369810

RESUMO

Light-emitting diodes (LEDs) is an eco-friendly light source with broad-spectrum antimicrobial activity. Recent studies have extensively been conducted to evaluate its efficacy in microbiological safety and the potential as a preservation method to extend the shelf-life of foods. This review aims to present the latest update of recent studies on the basics (physical, biochemical and mechanical basics) and antimicrobial activity of LEDs, as well as its application in the food industry. The highlight will be focused on the effects of LEDs on different types (bacteria, yeast/molds, viruses) and forms (planktonic cells, biofilms, endospores, fungal toxin) of microorganisms. The antimicrobial activity of LEDs on various food matrices was also evaluated, together with further analysis on the food-related factors that lead to the differences in LEDs efficiency. Besides, the applications of LEDs on the food-related conditions, packaged food, and equipment that could enhance LEDs efficiency were discussed to explore the future trends of LEDs technology in the food industry. Overall, the present review provides important insights for future research and the application of LEDs in the food industry.


Assuntos
Anti-Infecciosos , Alimentos , Bactérias , Esporos Bacterianos , Biofilmes
14.
Crit Rev Food Sci Nutr ; : 1-13, 2023 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-37811651

RESUMO

Probiotics are not only a food supplement, but they have shown great potential in their nutritional, health and therapeutic effects. To maximize the beneficial effects of probiotics, it is commonly achieved by adding prebiotics. Prebiotics primarily comprise indigestible carbohydrates, specific peptides, proteins, and lipids, with oligosaccharides being the most extensively studied prebiotics. However, these rapidly fermenting oligosaccharides have many drawbacks and can cause diarrhea and flatulence in the body. Hence, the exploration of new prebiotic is of great interest. Besides oligosaccharides, protein hydrolysates have been demonstrated to enhance the expression of beneficial properties of probiotics. Consequently, this paper outlines the mechanism underlying the action of protein hydrolysates on probiotics, as well as the advantageous impacts of proteins hydrolysates derived from various food sources on probiotics. In addition, this paper also reviews the currently reported biological activities of protein hydrolysates. The aim is a theoretical basis for the development and implementation of novel prebiotics.

15.
Fish Shellfish Immunol ; 134: 108579, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36738947

RESUMO

Toll-like receptors (TLRs) are a class of pattern recognition receptors (PRRs) that can recognize pathogen-associated molecular patterns (PMPs) and play important roles in the innate immune system in vertebrates. In this study, we identified a teleost-specific tlr22 gene from yellow catfish (Pelteobagrus fulvidraco) and its immune roles in response to different pathogens were also determined. The open reading frame (ORF) of the tlr22 was 2892 bp in length, encoding a protein of 963 amino acids. Multiple protein sequences alignment, secondary and three-dimensional structure analyses revealed that TLR22 is highly conserved among different fish species. Phylogenetic analysis showed that the phylogenetic topology was divided into six families of TLR1, TLR3, TLR4, TLR5, TLR7 and TLR11, and TLR22 subfamily was clustered into TLR11 family. Meanwhile, synteny and gene structure comparisons revealed functional and evolutionary conservation of the tlr22 gene in teleosts. Furthermore, tlr22 gene was shown to be widely expressed in detected tissues except barbel and eye, with highest expression level in liver. The transcription of tlr22 was significantly increased in spleen, kidney, liver and gill tissues at different timepoints after Poly I:C infection, suggesting TLR22 plays critical roles in defensing virus invasion. Similarly, the transcription of tlr22 was also dramatically up-regulated in spleen, kidney and gill tissues with different patterns after Aeromonas hydrophila infection, indicating that TLR22 is also involved in resisting bacteria invasion. Our findings will provide a solid basis for the investigation the immune functions of tlr22 gene in teleosts, as well as provide useful information for disease control and treatment for yellow catfish.


Assuntos
Peixes-Gato , Doenças dos Peixes , Animais , Regulação da Expressão Gênica , Aeromonas hydrophila/fisiologia , Filogenia , Receptores Toll-Like/genética , Poli I-C , Proteínas de Peixes/genética
16.
J Nanobiotechnology ; 21(1): 210, 2023 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-37408007

RESUMO

Although RNA interference (RNAi) therapy has emerged as a potential tool in cancer therapeutics, the application of RNAi to glioblastoma (GBM) remains a hurdle. Herein, to improve the therapeutic effect of RNAi on GBM, a cancer cell membrane (CCM)-disguised hypoxia-triggered RNAi nanomedicine was developed for short interfering RNA (siRNA) delivery to sensitize cells to chemotherapy and radiotherapy. Our synthesized CCM-disguised RNAi nanomedicine showed prolonged blood circulation, high BBB transcytosis and specific accumulation in GBM sites via homotypic recognition. Disruption and effective anti-GBM agents were triggered in the hypoxic region, leading to efficient tumor suppression by using phosphoglycerate kinase 1 (PGK1) silencing to enhance paclitaxel-induced chemotherapy and sensitize hypoxic GBM cells to ionizing radiation. In summary, a biomimetic intelligent RNAi nanomedicine has been developed for siRNA delivery to synergistically mediate a combined chemo/radiotherapy that presents immune-free and hypoxia-triggered properties with high survival rates for orthotopic GBM treatment.


Assuntos
Neoplasias Encefálicas , Glioblastoma , Humanos , Glioblastoma/terapia , Glioblastoma/metabolismo , Interferência de RNA , Neoplasias Encefálicas/tratamento farmacológico , Nanomedicina , Biomimética , RNA Interferente Pequeno , Hipóxia/tratamento farmacológico , Linhagem Celular Tumoral
17.
Cell Mol Life Sci ; 79(8): 422, 2022 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-35835966

RESUMO

Microtubule dynamics ensure multiple cellular events during oocyte meiosis, which is critical for the fertilization and early embryo development. KIF15 (also termed Hklp2) is a member of kinesin-12 family motor proteins, which participates in Eg5-related bipolar spindle formation in mitosis. In present study, we explored the roles of KIF15 in mouse oocyte meiosis. KIF15 expressed during oocyte maturation and localized with microtubules. Depletion or inhibition of KIF15 disturbed meiotic cell cycle progression, and the oocytes which extruded the first polar body showed a high aneuploidy rate. Further analysis showed that disruption of KIF15 did not affect spindle morphology but resulted in chromosome misalignment. This might be due to the reduced stability of the K-fibers, which further induced the loss of kinetochore-microtubule attachment and activated spindle assembly checkpoint, showing with the failed release of Bub3 and BubR1. Based on mass spectroscopy analysis and coimmunoprecipitation data we showed that KIF15 was responsible for recruiting HDAC6, NAT10 and SIRT2 to maintain the acetylated tubulin level, which further affected tubulin acetylation for microtubule stability. Taken together, these results suggested that KIF15 was essential for the microtubule acetylation and cell cycle control during mouse oocyte meiosis.


Assuntos
Cinesinas , Tubulina (Proteína) , Acetilação , Animais , Cinesinas/genética , Pontos de Checagem da Fase M do Ciclo Celular , Meiose , Camundongos , Microtúbulos/metabolismo , Oócitos/metabolismo , Fuso Acromático/metabolismo , Tubulina (Proteína)/metabolismo
18.
J Sci Food Agric ; 103(4): 1885-1894, 2023 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-36571152

RESUMO

BACKGROUND: Cordyceps militaris is an edible and medicinal fungus, and its polysaccharides are among its main pharmacological components. They can display immunomodulation, anti-oxidation, anti-inflammation, anti-hypolipidemic, and other functions. The anti-obesity effect of C. militaris polysaccharides (CMP) is not yet fully understood, however. RESULTS: In this study, a CMP diet intervention was applied over a 4 week period to mice with obesity induced by a high-fat diet (HFD), followed by profiling of obesity-induced dyslipidemia, low-grade inflammation, and gut dysbiosis. The results suggested that CMP could significantly reduce HFD-induced obesity, alleviate obesity-induced hyperlipidemia and insulin resistance, and ameliorate systemic inflammation, showing a promising ability to protect mice from obesity. Further analyses revealed that CMP could regulate obesity-induced gut dysbiosis by restoring the phylogenetic diversity of gut microbiota. It could also increase the relative abundance of short-chain fatty acid (SCFA)-producing bacteria, while down-regulating the level of bacteria that were positively related to the development of obesity. A correlation analysis showed that Helicobacter, Allobaculum, Clostridium XVIII, Parabacteroides, Ligilactobacillus, Faecalibaculum, Adlercreutzia, and Mediterraneibacter were positively related to obese phenotypes. CONCLUSION: This study highlights the potential of CMP as a prebiotic agent to protect obese individuals from metabolic disorders and gut dysbiosis. © 2022 Society of Chemical Industry.


Assuntos
Cordyceps , Microbioma Gastrointestinal , Doenças Metabólicas , Camundongos , Animais , Filogenia , Disbiose/tratamento farmacológico , Disbiose/microbiologia , Obesidade/metabolismo , Doenças Metabólicas/tratamento farmacológico , Doenças Metabólicas/etiologia , Dieta Hiperlipídica/efeitos adversos , Inflamação , Prebióticos , Camundongos Endogâmicos C57BL , Polissacarídeos/farmacologia
19.
J Cell Physiol ; 237(12): 4580-4590, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36317691

RESUMO

Polo like kinase 1 (PLK1) is a protein kinase involved in regulating the spindle assembly and cell cycle control in mammalian oocytes. SUMOylation, one way of post-translational modification, regulates oocyte meiosis by controlling several substrates. However, the relation between PLK1 and SUMOylation in oocytes is still unknown. In this study, we investigated that whether PLK1 was modified by SUMOylation in oocytes and its potential relationship with age-related meiotic abnormalities. We showed that PLK1 had colocalization and protein interaction with Small Ubiquitin-Like Modifier (SUMO)-1 and SUMO-2/3 in mouse oocytes, indicating that PLK1 could be modified by SUMO-1 and SUMO-2/3. Overexpression of PLK1 SUMOylation site mutants PLK1K178R and PLK1K191R caused the increase of the abnormal spindle rate of oocytes and the decline of the first polar body extrusion rate with the abnormal localization of PLK1, suggesting that the SUMOylation modification of PLK1 is essential for normal meiosis in oocytes. Compared with young mice, the expression of PLK1 protein increased and the expression of SUMO-1 and SUMO-2/3 protein decreased in the oocytes of aged mice, indicating that the SUMOylation of PLK1 might be related to the mouse aging. Therefore, our data suggested that PLK1 could be SUMOylated by SUMO-1 and SUMO-2/3 in mouse oocytes and SUMOylation of PLK1 regulated the meiosis progression of oocytes which was related with aging.


Assuntos
Proteínas de Ciclo Celular , Meiose , Oócitos , Proteínas Serina-Treonina Quinases , Sumoilação , Animais , Camundongos , Proteínas de Ciclo Celular/metabolismo , Oócitos/metabolismo , Fuso Acromático/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Proto-Oncogênicas/metabolismo , Fatores Etários , Quinase 1 Polo-Like
20.
Neurobiol Dis ; 163: 105605, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34973450

RESUMO

Parkinson's disease (PD) is characterized by impaired mitochondrial function and decreased ATP levels. Aerobic glycolysis and lactate production have been shown to be upregulated in dopaminergic neurons to sustain ATP levels, but the effect of upregulated glycolysis on dopaminergic neurons remains unknown. Since lactate promotes apoptosis and α-synuclein accumulation in neurons, we hypothesized that the lactate produced upon upregulated glycolysis is involved in the apoptosis of dopaminergic neurons in PD. In this study, we examined the expression of hexokinase 2 (HK2) and lactate dehydrogenase (LDH), the key enzymes in glycolysis, and lactate levels in the substantia nigra pars compacta (SNpc) of a MPTP-induced mouse model of PD and in MPP+-treated SH-SY5Y cells. We found that the expression of HK2 and LDHA and the lactate levels were markedly increased in the SNpc of MPTP-treated mice and in MPP+-treated SH-SY5Y cells. Exogenous lactate treatment led to the apoptosis of SH-SY5Y cells. Intriguingly, lactate production and the apoptosis of dopaminergic neurons were suppressed by the application of 3-bromopyruvic acid (3-Brpa), a HK2 inhibitor, or siRNA both in vivo and in vitro. 3-Brpa treatment markedly improved the motor behaviour of MPTP-treated mice in pole test and rotarod test. Mechanistically, lactate increases the activity of adenosine monophosphate-activated protein kinase (AMPK) and suppresses the phosphorylation of serine/threonine kinase 1 (Akt) and mammalian target of rapamycin (mTOR). Together, our data suggest that upregulated HK2 and LDHA and increased lactate levels prompt the apoptosis of dopaminergic neurons in PD. Inhibition of HK2 expression attenuated the apoptosis of dopaminergic neurons by downregulating lactate production and AMPK/Akt/mTOR pathway in PD.


Assuntos
Apoptose/fisiologia , Neurônios Dopaminérgicos/metabolismo , Hexoquinase/metabolismo , L-Lactato Desidrogenase/metabolismo , Ácido Láctico/metabolismo , Transtornos Parkinsonianos/metabolismo , Parte Compacta da Substância Negra/metabolismo , Animais , Apoptose/efeitos dos fármacos , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Neurônios Dopaminérgicos/efeitos dos fármacos , Hexoquinase/genética , Humanos , L-Lactato Desidrogenase/genética , Camundongos , Atividade Motora/efeitos dos fármacos , Transtornos Parkinsonianos/genética , Parte Compacta da Substância Negra/efeitos dos fármacos , Piruvatos/farmacologia , Regulação para Cima
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA